Connectedness, non superstability, and generic elements

November 21, 2018

The aim of this lecture is to prove that $\mathbb{F}\omega$ is not superstable but it is connected.

1 Some definitions

• Left generic: If X is a definable subset of G then we say X is left generic in G if finitely many left translates of X by elements of G cover G

$$\exists h_1, ..., h_r : G = \bigcup_i h_i X$$

- Generic formula: We say that a formula is generic if the set it determine is generic.
- Generic over: G is a stable group. If $g \in G$ and A is a set of parameters from G then we say that G is generic over A or tp(g/A) is generic if every formula in tp(g/A) is generic in G.
- **Type generic**: We say that a type is generic if it contains only generic formula.
- Algebraic: We say that $g \in G$ is algebraic over $A \subseteq G$ if there exists X definable set over A (with a formula that its parameters are in A) such that $g \in X$ and X is finite.
- **Connected:** G is said to be connected if G has no proper definable subgroup of finite index.

2 Superstability

We know that Zlil Sela prooved that $\mathbb{F}\omega$ is stable. His demonstration is over our comprehension .So instead to understand it, we will try to show that $\mathbb{F}\omega$ is not superstable. **Lemma 0.1:** Suppose X is a left generic set then X contains all but finitely many elements of the basis.

Lemma: $X \subseteq G^n$ definable set by $\phi(x_1, x_2, ..., x_n, A)$. So if $\sigma \in Aut_A(G)$ ($\Leftrightarrow \forall a \in A, \sigma(a) = a$) then $\sigma(X) = X$.

This means that if $(g_1, ..., g_n)$ satisfy ϕ so $\sigma(g_1), ..., \sigma(g_n)$ satisfy ϕ . Proof of the lemma 0.1:

 $\mathbb{F}\omega$ is a free group $\mathbb{F}\omega = \langle e_1, e_2, \dots \rangle$ when e_i is a basis element.

X definable subset of $\mathbb{F}\omega$ by $\phi(x_1, ..., x_l, a_1, ..., a_k)$.

Let N be such that the parameters in the formula defining X as well as $h_1, ..., h_s$ are words in $e_1, ..., e_N$ and their inverses.

X is generic this means $\mathbb{F}\omega = \bigcup_{i=1}^{s} h_i X.$

Now, $e_{N+1} \in h_i X$ then $h_i^{-1} e_{N+1} \in X$. So we want to proof that $\exists \sigma \in Aut_{\langle e, e_N \rangle}(\mathbb{F}\omega)$ such that $\sigma(h_i^{-1} e_{N+1}) = e_{N+1}$ and

 $\forall j \geq N+1 \ \exists \sigma_j \in Aut_{\langle e,e_N \rangle}(\mathbb{F}\omega) \text{ such that } \sigma_j(h_i^{-1}e_{N+1}) = e_j \text{ and } we will finish.$

See the lecture 1 about Automorphism.

There exists $f \in Aut_{\mathbb{F}\omega}(\mathbb{F}\omega)$ such that

$$e_{N+1} \longmapsto h_i^{-1} e_{N+1}$$

$$e_j \longmapsto e_j$$

for every $j \neq N + 1$. Take his inverse σ :

$$h_i^{-1}e_{N+1}\longmapsto e_{N+1}$$

$$e_j \longmapsto e_j$$

for every $j \neq N + 1$. Now we define

$$\begin{split} \Gamma_j : e_{N+1} &\longmapsto e_j \\ e_j &\longmapsto e_{N+1} \\ e_k &\longmapsto e_k \end{split}$$

for all $j \neq k \neq N + 1$. Let $\sigma_j = \Gamma_j \circ \sigma$. All these this homomorphisms are Automorphisms. \Longrightarrow Then we find

$$\sigma(h_i^{-1}e_{N+1}) = e_{N+1} \in X$$

 and

$$\sigma_j(h_i^{-1}e_{N+1}) = e_j \in X$$

and we finish.

Proposition 0.2: $G = \mathbb{F}\omega$ is not superstable.

Before to start to prove this lemma there are some points to understand:

1) $g,h\in\mathbb{F}\omega$ if $g^2=h^2\Longrightarrow g=h$

2) If G is stable so there exist at least 1-type generique.

3) Theorem of Poizat: G superstable. If $A = \{a\}$ and g is generic and algebric over A then a is generic.

Proof of proposition 0.2:

Assume by contradiction that $\mathbb{F}\omega$ is superstable.

Take X define by $\phi(x) : \exists y \ x = y^2$.

There are no basis element in X (because a basis element cannot be a square). X is not generic according to lemma 0.1.

 $\mathbb{F}\omega$ is superstable and in particular stable. Thus there exist a $g \in \mathbb{F}\omega$ that is generic. $g^2 \in \phi$ so $g^2 = a$ is not generic.

We want to show that \mathbf{a} is algebric:

We have a formula :

$$\varphi(x, a) : x^2 = a$$

 $\varphi(g, a) : g^2 = a$

so g is contain in the formula and we have a finite set (because there are a unique root in the free group).

Thus, according to Poizat **a** is generic. Absurdity!

Proposition 0.4: $\mathbb{F}\omega$ is connected.

Proof:

Suppose by contradiction that $\mathbb{F}\omega$ is not connected.

Suppose that X is a definable finite index subgroup. Then X and all its translates $h_i X$ are all left generic definable sets.

 \Rightarrow each of them contain infinitely many of $e'_n s$ contadicting their disjoinctness.

Proposition 0.5: e_{n+1} is generic over $e_1, ..., e_n$. (this means that e_{n+1} realize definable sets with parameters $e_1, ..., e_n$)

Proof:

By the above e_{n+1} is contained in all the generic sets defined over $e_1, ..., e_n$.

 $\mathbb{F}_n\text{is}$ stable so there is a 1-type generic (over any parameters) and $e_{n+1}\text{must}$ realize it.