
1 Lecture

De�nition 1. A countable group G is said to be homogeneous if for every two

tuples g1, . . . , gk, h1, . . . , hk ∈ G s.t. tpG (g1, . . . , gk) = tpG (h1, . . . , hk) there is an

automorphism σ ∈ Aut (G) s.t. σ (gi) = hi for 1 ≤ i ≤ k.

The opposite direction is true. Let g1, . . . , gk, h1, . . . , hk ∈ G be tuples and let

ϕ ∈ Aut (G) be an automorphism s.t. ϕ (gi) = hi for all i then tpG (g1, . . . , gk) =

tpG (h1, . . . , hk). We notice that g ∼ h ⇐⇒ tp (g) = tp (h) is an equivalence

relation. In the general case the orbits of the automorphism group are a subpar-

tition of the partition induced by the relation of being in the same type. If G is

homogeneous then these partition coincide.

Proposition 2. Let S = {s1, . . . , sk} be a �nite set with k ≥ 2. Let g1, . . . , gn, h1, . . . , hn ∈
FS s.t. tpFS (g1, . . . , gn) = tpFS (h1, . . . , hn) there is an homomorphism ν : FS → FS

s.t. ν (gi) = hi for 1 ≤ i ≤ k.

Proof. For every g ∈ Fs we construct the term wg (x1, . . . , xk) by taking the letters

s1, . . . , sk ∈ FS and replacing them by variables x1, . . . , xk. For example let g =

s1s2s
−1
1 s−12 ∈ FS so wg (x1, x2) = x1x2x

−1
1 x−12 and wg (s1, s2) = g. Let

ϕ (z1, . . . , zn) = ∃x1, . . . , xk
n∧

i=1

wgi (x1, . . . , xk) = zi

clearly FS � ϕ (g1, . . . , gn) because for s1, . . . , sk we have wgi (s1, . . . , sk) = gi .

Because g1, . . . , gnand h1, . . . , hn are of the same type FS � ϕ (h1, . . . , hn) meaning

there are t1, . . . , tk ∈ Fs s.t. wgi (t1, . . . , tk) = hi. Let

ν : FS → FS

si 7→ ti

and we get ν (gi) = hi.

De�nition 3. For every g ∈ FS we de�ne

ϕ′g (z, x1, . . . , xk) = (wg (x1, . . . , xk) = z)

Remark 4. We notice that it is enough to discuss existence of an homomorphism

for a 1 tuple we can achieve the general case by conjunction of formulas of the

formϕ′g (z, x1, . . . , xk).

Let g, h ∈ FS with tpFS (g) = tpFS (h) .
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Idea. Naively we want to construct a formula ψk (y1, . . . , yk) s.t. for all t1, . . . , tk ∈
FS we will have

FS � ψ (t1, . . . , tk) ⇐⇒ t1, . . . , tk are the images of s1, . . . , skunder an automorphism

Then we will have FS � ϕ′g (g, s1, . . . , sk) ∧ ψ (s1, . . . , sk) and for every t1, . . . , tk ∈
FS s.t. FS � ϕ′g (h, t1, . . . , tk) ∧ ψ (t1, . . . , tk) the map σ sending si 7→ ti is an

automorphism with σ (g) = h.

Problem. The formula ∃x1, . . . , xk∀z ψk (x1, . . . , xk) ∧ ¬ψk (x1, . . . , xk, z) would

contradict Sela's Theorem that all non abelian free groups have the same �rst

order theory.

But Sela has another theorem that might come in handy

Theorem 5. Free groups have �relative co-Hopf property� . Let g ∈ FS be an

element not contained in any proper free factor and let σ : FS → FS be an injective

homomorphism s.t. σ (g) = g. Then σ is also surjective.

Idea. Construct a formula ψk (y1, . . . , yk) s.t. for all t1, . . . , tk ∈ FS we will have

FS � ψ (t1, . . . , tk) ⇐⇒ t1, . . . , tk are the images of s1, . . . , skunder an inj. homomorphsim

Then we will get an inj. homomorphism σ (g) = h. Symmetrically we can get an

inj. homomorphism τ (h) = g. From the relative co Hopf property τ ◦ σ is an

automorphism so also σ is an automorphism.

This idea works for k = 2. This proof that F2 to is homogeneous is due to Nies.

Proposition 6. Let σ : FS → FS be an homomorphism let K = 〈s1, . . . , sl〉 be a

free factor. Then σ|K is injective i� 〈σ (s1) , . . . , σ (sl)〉 is a subgroup of rank l.

Proof. Nielsen-Schreier +Hopf property.

Proposition 7. Let t1, t2 ∈ FS then 〈t1, t2〉 is of rank 2 i� [t1, t2] 6= 1

Proof. 〈t1, t2〉 is of rank less then 2 i� 〈t1, t2〉 is abelian (Nielsen-Schreier)

So the formula ψ2 is

ψ2 (x1, x2) = ([x1, x2] 6= 1)

Fact 8. Let J ≤ FS be a free factor of FS and let K ≤ FS be a subgroup. Then

the subgroup J ∩K is a free factor of K.
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Claim 9. Let FS1 and FS2 be free groups on the sets S1, S2 let g ∈ FS1 , h ∈ FS2

be elements and ν : FS2 → FS1 and injective homomorphism s.t. ν (h) = g. If FS1

has a free factor J1 s.t. rankJ = 1 and g ∈ J then FS2 has a free factor J2 with

rankJ2 = 1 and h ∈ J2.

Proof. Let K ≤ FS1 be the group K = Imν. Because of fact 8 the subgroup

J1 ∩K is a free factor of K. We also know that J1 ∩K ≤ J1 and a subgroup of

free group of rank 1 is a free group of rank 1. Then J2 = ν−1 (J1 ∩K) satis�es the

requirements. We notice that ν|J2 : J2 → J1 ∩K is an isomorphism.

Theorem 10. Let S be a set |S| = 2 an let g, h ∈ FS be elements s.t. tpF2 (g) =

tpF2 (h) then there is an automorphism σ ∈ Aut (FS) with ϕ (g) = h

Proof. The formula ∃x1x2 ϕg (z, x1, x2)∧[x1, x2] 6= 1 gives us an injective homomor-

phism ν1 : FS → FS with ν1 (g) = h the formula ∃x1x2 ϕh (z, x1, x2) ∧ [x1, x2] 6= 1

gives us an injective homomorphism ν2 : FS → FS s.t. ν2 (h) = g. If FS is inde-

composable over g then ν2 ◦ν1 is an automorphism because of the relative co-Hopf

property. If FS isn't indecomposable over g then from Claim 9 there are free factors

J1, J2 ≤ FS s.t. rank (J1) , rank (J2) = 1 , g ∈ J1, h ∈ J2 and ν2 (J2) = J1. Then

we can extend ν2|J2 : J2 → J1 to an automorphism σ : FS → FS with σ|J2 = ν1|J2
and σ (h) = g.

Problem. There can't be appropriate formulas ψk for k > 2 because the sentence

∃x1, x2∀x3, . . . , xkψ2 (x1, x2) ∧ ¬ψk (x1, . . . , xk) would contradict Sela.

Fact 11. Let H < FS be a subgroup. Then H has in�nite index i� there exists a

subgroup H < K < FS of in�nite index s.t. H is a free factor of K.

So the sentence ∃x1, x2∀x3, . . . , xkψ2 (x1, x2) ∧ ¬ψk (x1, . . . , xk) can be interpreted

as meaning FS has a �nite index subgroup of rank 2. The Nielsen Schreier formula

for the rank of a �nite index subgroup states r = 1 + i (k − 1) with i being the

index of the subgroup. The formula can hold only if k = 2 and i = 1. Meaning

the only possible case of a �nite index subgroup of rank 2 is F2 ≤ F2.

Theorem 12. Let g, h ∈ FS s.t. g is not contained in a proper free factor of

FS. There are a �nite set of proper quotients ηi : FS → Qi s.t. for every non

injective homomorphism σ : FS → FS s.t. σ (g) = h there exists an automorphism

τ ∈ Mod〈g〉 (FS) s.t. σ ◦ τ factors through one of the quotient.
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Idea. De�ne a relation ζ (x1, . . . , xk, y1, . . . , yk)s.t. for all t1, . . . , tk, t
′
1, . . . , t

′
k ∈ FS

FS � ζ (t1, . . . , tk, t
′
1, . . . , t

′
k)

m

There exists τ ∈ Mod〈g〉 (FS) and σ : FS → FS s.t. σ (g) = h

and σ (si) = ti and σ ◦ τ (si) = τ (t′i)

So again this is impossible but, �nally, we can construct a formula ζ s.t

FS � ζ (t1, . . . , tk, t
′
1, . . . , t

′
k)

⇑

There exists τ ∈ Mod〈g〉 (FS) and σ : FS → FS s.t. σ (g) = h

and σ (si) = ti and σ ◦ τ (si) = τ (t′i)

Let ui ∈ FS be words s.t. ui ∈ ker (ηi) . We construct

ψg,h (x1, . . . , xk) = ∀y1, . . . , ykζ (x1, . . . , xk, y1, . . . , yk)→
∧
i

¬ϕ′ui
(1, y1, . . . , yk)

Let σ be an homomorphism and t1, . . . , tk ∈ FS s.t. σ (si) = ti . If FS �

ψg,h (t1, . . . , tk) we can conclude σ is injective because of Theorem 12.

We are left with two assignments

1. Construct ζ.

2. Prove that FS � ϕ′g (g, s1, . . . , sk) ∧ ψg,h (s1, . . . , sk)

We won't prove 1. There is a JSJ decomposition of FS relative to 〈g〉 < FS.

We analyze the way in which Dehn twists act on the vertex groups of the JSJ

decomposition. For regular vertex groups the Dehn twist conjugate by an element

of FS. Some of the amalgamation products come from splitting a surface along a

simple curve. In this case the Dehn twist act as an automorphism of the surface

group. If the amalgamation product doesn't come from splitting a surface the

Dehn twist conjugates the surface group. Let τ ∈ Mod〈g〉 (FS) be a modular

automorphism and K ≤ FS is regular vertex subgroup then there is a f ∈ FS

s.t. τ (k) = fkf−1for every k ∈ K. Let H ≤ FS be a surface vertex subgroup

then τ (H) = fHf−1 (f is di�erent) but it doesn't necessarily conjugate every

single elements. Let σ : FS → FS be a homomorphism then for k ∈ K we have

σ ◦τ (k) = σ (fkf−1) = σ (f)σ (k)σ (f)−1 . For H we have that subgroup σ ◦τ (H)

is conjugate to the subgroupσ (H). So σ (H) is abelian i� σ ◦ τ (H) is abelian.

Each vertex in the JSJ decomposition gives us a set of generators. The edges of
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the JSJ decomposition give us relations between the generators. Now we can write

FS
∼= 〈a1, . . . , ak|r1, . . . , rj〉. The relation can be expressed as a set of equations

Σ (x1, . . . , xk) =
∧j

i=1 ϕ
′
ri

(1, x1, . . . , xk). We construct the formulas

ζRV ertex (x1, . . . , xl, y1, . . . , yl) = ∃z
∧
i

zxiz
−1 = yi

ζSV ertex (x1, . . . , xl, y1, . . . , yl) =

(
l∧

i,j=1

[xi, xj] = 1

)
←→

(
l∧

i,j=1

[yi, yj] = 1

)

Let a1, . . . , al a subset of generators from a regular vertex group and let t1, . . . , tl, t
′
1, . . . , t

′
l ∈

FS be elements s.t. σ (ai) = ti and σ◦τ (ai) = t′i. Then FS � ζRV ertex (t1, . . . , tl, t
′
1, . . . , t

′
l).

Let b1, . . . , bl be a subset of generators from a surface group and let t1, . . . , tl, t
′
1, . . . , t

′
l ∈

FS be elements s.t. σ (bi) = ti and σ◦τ (bi) = t′i then FS � ζSV ertex (t1, . . . , tl, t
′
1, . . . , t

′
l).

For each vertex on the JSJ decomposition we construct one of these two formulas

so

ζ (x1, . . . , xk, y1, . . . , yk) =
∧
i

ζRV ertex (x1, . . . , xli , y1, . . . , yli)
∧
i

ζSV ertex (x1, . . . , xli , y1, . . . , yli)

To put it all together. We write g as a word wg in the generators from the JSJ de-

composition so the �nal formuls is ϕ′g (z, x1, . . . , xl)∧Σ (x1, . . . , xl)∧ψgh (x1, . . . , xl).
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