1 Lecture

Definition 1. A countable group G is said to be homogeneous if for every two tuples $g_{1}, \ldots, g_{k}, h_{1}, \ldots, h_{k} \in G$ s.t. $\operatorname{tp}^{G}\left(g_{1}, \ldots, g_{k}\right)=\operatorname{tp}^{G}\left(h_{1}, \ldots, h_{k}\right)$ there is an automorphism $\sigma \in \operatorname{Aut}(G)$ s.t. $\sigma\left(g_{i}\right)=h_{i}$ for $1 \leq i \leq k$.

The opposite direction is true. Let $g_{1}, \ldots, g_{k}, h_{1}, \ldots, h_{k} \in G$ be tuples and let $\varphi \in \operatorname{Aut}(G)$ be an automorphism s.t. $\varphi\left(g_{i}\right)=h_{i}$ for all i then $\operatorname{tp}^{G}\left(g_{1}, \ldots, g_{k}\right)=$ $\operatorname{tp}^{G}\left(h_{1}, \ldots, h_{k}\right)$. We notice that $g \sim h \Longleftrightarrow \operatorname{tp}(g)=\operatorname{tp}(h)$ is an equivalence relation. In the general case the orbits of the automorphism group are a subpartition of the partition induced by the relation of being in the same type. If G is homogeneous then these partition coincide.

Proposition 2. Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$ be a finite set with $k \geq 2$. Let $g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n} \in$ F_{S} s.t. $\operatorname{tp}^{F_{S}}\left(g_{1}, \ldots, g_{n}\right)=t p^{F_{S}}\left(h_{1}, \ldots, h_{n}\right)$ there is an homomorphism $\nu: F_{S} \rightarrow F_{S}$ s.t. $\nu\left(g_{i}\right)=h_{i}$ for $1 \leq i \leq k$.

Proof. For every $g \in F_{s}$ we construct the term $w_{g}\left(x_{1}, \ldots, x_{k}\right)$ by taking the letters $s_{1}, \ldots, s_{k} \in F_{S}$ and replacing them by variables x_{1}, \ldots, x_{k}. For example let $g=$ $s_{1} s_{2} s_{1}^{-1} s_{2}^{-1} \in F_{S}$ so $w_{g}\left(x_{1}, x_{2}\right)=x_{1} x_{2} x_{1}^{-1} x_{2}^{-1}$ and $w_{g}\left(s_{1}, s_{2}\right)=g$. Let

$$
\varphi\left(z_{1}, \ldots, z_{n}\right)=\exists x_{1}, \ldots, x_{k} \bigwedge_{i=1}^{n} w_{g_{i}}\left(x_{1}, \ldots, x_{k}\right)=z_{i}
$$

clearly $F_{S} \vDash \varphi\left(g_{1}, \ldots, g_{n}\right)$ because for s_{1}, \ldots, s_{k} we have $w_{g_{i}}\left(s_{1}, \ldots, s_{k}\right)=g_{i}$. Because g_{1}, \ldots, g_{n} and h_{1}, \ldots, h_{n} are of the same type $F_{S} \vDash \varphi\left(h_{1}, \ldots, h_{n}\right)$ meaning there are $t_{1}, \ldots, t_{k} \in F_{s}$ s.t. $w_{g_{i}}\left(t_{1}, \ldots, t_{k}\right)=h_{i}$. Let

$$
\begin{aligned}
\nu: F_{S} & \rightarrow F_{S} \\
s_{i} & \mapsto t_{i}
\end{aligned}
$$

and we get $\nu\left(g_{i}\right)=h_{i}$.
Definition 3. For every $g \in F_{S}$ we define

$$
\varphi_{g}^{\prime}\left(z, x_{1}, \ldots, x_{k}\right)=\left(w_{g}\left(x_{1}, \ldots, x_{k}\right)=z\right)
$$

Remark 4. We notice that it is enough to discuss existence of an homomorphism for a 1 tuple we can achieve the general case by conjunction of formulas of the form $\varphi_{g}^{\prime}\left(z, x_{1}, \ldots, x_{k}\right)$.

Let $g, h \in F_{S}$ with $\operatorname{tp}^{F_{S}}(g)=\operatorname{tp}^{F_{S}}(h)$.

Idea. Naively we want to construct a formula $\psi^{k}\left(y_{1}, \ldots, y_{k}\right)$ s.t. for all $t_{1}, \ldots, t_{k} \in$ F_{S} we will have
$F_{S} \vDash \psi\left(t_{1}, \ldots, t_{k}\right) \Longleftrightarrow t_{1}, \ldots, t_{k}$ are the images of s_{1}, \ldots, s_{k} under an automorphism

Then we will have $F_{S} \vDash \varphi_{g}^{\prime}\left(g, s_{1}, \ldots, s_{k}\right) \wedge \psi\left(s_{1}, \ldots, s_{k}\right)$ and for every $t_{1}, \ldots, t_{k} \in$ F_{S} s.t. $F_{S} \vDash \varphi_{g}^{\prime}\left(h, t_{1}, \ldots, t_{k}\right) \wedge \psi\left(t_{1}, \ldots, t_{k}\right)$ the map σ sending $s_{i} \mapsto t_{i}$ is an automorphism with $\sigma(g)=h$.

Problem. The formula $\exists x_{1}, \ldots, x_{k} \forall z \psi^{k}\left(x_{1}, \ldots, x_{k}\right) \wedge \neg \psi^{k}\left(x_{1}, \ldots, x_{k}, z\right)$ would contradict Sela's Theorem that all non abelian free groups have the same first order theory.

But Sela has another theorem that might come in handy
Theorem 5. Free groups have "relative co-Hopf property". Let $g \in F_{S}$ be an element not contained in any proper free factor and let $\sigma: F_{S} \rightarrow F_{S}$ be an injective homomorphism s.t. $\sigma(g)=g$. Then σ is also surjective.

Idea. Construct a formula $\psi^{k}\left(y_{1}, \ldots, y_{k}\right)$ s.t. for all $t_{1}, \ldots, t_{k} \in F_{S}$ we will have

$$
F_{S} \vDash \psi\left(t_{1}, \ldots, t_{k}\right) \Longleftrightarrow t_{1}, \ldots, t_{k} \text { are the images of } s_{1}, \ldots, s_{k} \text { under an inj. homomorphsim }
$$

Then we will get an inj. homomorphism $\sigma(g)=h$. Symmetrically we can get an inj. homomorphism $\tau(h)=g$. From the relative co Hopf property $\tau \circ \sigma$ is an automorphism so also σ is an automorphism.
This idea works for $k=2$. This proof that F_{2} to is homogeneous is due to Nies.
Proposition 6. Let $\sigma: F_{S} \rightarrow F_{S}$ be an homomorphism let $K=\left\langle s_{1}, \ldots, s_{l}\right\rangle$ be a free factor. Then $\left.\sigma\right|_{K}$ is injective iff $\left\langle\sigma\left(s_{1}\right), \ldots, \sigma\left(s_{l}\right)\right\rangle$ is a subgroup of rank l.

Proof. Nielsen-Schreier + Hopf property.
Proposition 7. Let $t_{1}, t_{2} \in F_{S}$ then $\left\langle t_{1}, t_{2}\right\rangle$ is of rank 2 iff $\left[t_{1}, t_{2}\right] \neq 1$
Proof. $\left\langle t_{1}, t_{2}\right\rangle$ is of rank less then 2 iff $\left\langle t_{1}, t_{2}\right\rangle$ is abelian (Nielsen-Schreier)
So the formula ψ^{2} is

$$
\psi^{2}\left(x_{1}, x_{2}\right)=\left(\left[x_{1}, x_{2}\right] \neq 1\right)
$$

Fact 8. Let $J \leq F_{S}$ be a free factor of F_{S} and let $K \leq F_{S}$ be a subgroup. Then the subgroup $J \cap K$ is a free factor of K.

Claim 9. Let $F_{S_{1}}$ and $F_{S_{2}}$ be free groups on the sets S_{1}, S_{2} let $g \in F_{S_{1}}, h \in F_{S_{2}}$ be elements and $\nu: F_{S_{2}} \rightarrow F_{S_{1}}$ and injective homomorphism s.t. $\nu(h)=g$. If $F_{S_{1}}$ has a free factor J_{1} s.t. $\operatorname{rank} J=1$ and $g \in J$ then $F_{S_{2}}$ has a free factor J_{2} with $\operatorname{rank} J_{2}=1$ and $h \in J_{2}$.

Proof. Let $K \leq F_{S_{1}}$ be the group $K=\operatorname{Im} \nu$. Because of fact 8 the subgroup $J_{1} \cap K$ is a free factor of K. We also know that $J_{1} \cap K \leq J_{1}$ and a subgroup of free group of rank 1 is a free group of rank 1. Then $J_{2}=\nu^{-1}\left(J_{1} \cap K\right)$ satisfies the requirements. We notice that $\left.\nu\right|_{J_{2}}: J_{2} \rightarrow J_{1} \cap K$ is an isomorphism.

Theorem 10. Let S be a set $|S|=2$ an let $g, h \in F_{S}$ be elements s.t. $t^{F_{2}}(g)=$ tp ${ }^{F_{2}}(h)$ then there is an automorphism $\sigma \in \operatorname{Aut}\left(F_{S}\right)$ with $\varphi(g)=h$

Proof. The formula $\exists x_{1} x_{2} \varphi_{g}\left(z, x_{1}, x_{2}\right) \wedge\left[x_{1}, x_{2}\right] \neq 1$ gives us an injective homomorphism $\nu_{1}: F_{S} \rightarrow F_{S}$ with $\nu_{1}(g)=h$ the formula $\exists x_{1} x_{2} \varphi_{h}\left(z, x_{1}, x_{2}\right) \wedge\left[x_{1}, x_{2}\right] \neq 1$ gives us an injective homomorphism $\nu_{2}: F_{S} \rightarrow F_{S}$ s.t. $\nu_{2}(h)=g$. If F_{S} is indecomposable over g then $\nu_{2} \circ \nu_{1}$ is an automorphism because of the relative co-Hopf property. If F_{S} isn't indecomposable over g then from Claim 9 there are free factors $J_{1}, J_{2} \leq F_{S}$ s.t. $\operatorname{rank}\left(J_{1}\right), \operatorname{rank}\left(J_{2}\right)=1, g \in J_{1}, h \in J_{2}$ and $\nu_{2}\left(J_{2}\right)=J_{1}$. Then we can extend $\left.\nu_{2}\right|_{J_{2}}: J_{2} \rightarrow J_{1}$ to an automorphism $\sigma: F_{S} \rightarrow F_{S}$ with $\left.\sigma\right|_{J_{2}}=\left.\nu_{1}\right|_{J_{2}}$ and $\sigma(h)=g$.

Problem. There can't be appropriate formulas ψ^{k} for $k>2$ because the sentence $\exists x_{1}, x_{2} \forall x_{3}, \ldots, x_{k} \psi^{2}\left(x_{1}, x_{2}\right) \wedge \neg \psi^{k}\left(x_{1}, \ldots, x_{k}\right)$ would contradict Sela.

Fact 11. Let $H<F_{S}$ be a subgroup. Then H has infinite index iff there exists a subgroup $H<K<F_{S}$ of infinite index s.t. H is a free factor of K.

So the sentence $\exists x_{1}, x_{2} \forall x_{3}, \ldots, x_{k} \psi^{2}\left(x_{1}, x_{2}\right) \wedge \neg \psi^{k}\left(x_{1}, \ldots, x_{k}\right)$ can be interpreted as meaning F_{S} has a finite index subgroup of rank 2. The Nielsen Schreier formula for the rank of a finite index subgroup states $r=1+i(k-1)$ with i being the index of the subgroup. The formula can hold only if $k=2$ and $i=1$. Meaning the only possible case of a finite index subgroup of rank 2 is $F_{2} \leq F_{2}$.

Theorem 12. Let $g, h \in F_{S}$ s.t. g is not contained in a proper free factor of F_{S}. There are a finite set of proper quotients $\eta_{i}: F_{S} \rightarrow Q_{i}$ s.t. for every non injective homomorphism $\sigma: F_{S} \rightarrow F_{S}$ s.t. $\sigma(g)=h$ there exists an automorphism $\tau \in \operatorname{Mod}_{\langle g\rangle}\left(F_{S}\right)$ s.t. $\sigma \circ \tau$ factors through one of the quotient.

Idea. Define a relation $\zeta\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right)$ s.t. for all $t_{1}, \ldots, t_{k}, t_{1}^{\prime}, \ldots, t_{k}^{\prime} \in F_{S}$

$$
F_{S} \vDash \zeta\left(t_{1}, \ldots, t_{k}, t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)
$$

\Uparrow

$$
\begin{gathered}
\text { There exists } \tau \in \operatorname{Mod}_{\langle g\rangle}\left(F_{S}\right) \text { and } \sigma: F_{S} \rightarrow F_{S} \text { s.t. } \sigma(g)=h \\
\text { and } \sigma\left(s_{i}\right)=t_{i} \text { and } \sigma \circ \tau\left(s_{i}\right)=\tau\left(t_{i}^{\prime}\right)
\end{gathered}
$$

So again this is impossible but, finally, we can construct a formula ζ s.t

$$
F_{S} \vDash \zeta\left(t_{1}, \ldots, t_{k}, t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)
$$

\Uparrow
There exists $\tau \in \operatorname{Mod}_{\langle g\rangle}\left(F_{S}\right)$ and $\sigma: F_{S} \rightarrow F_{S}$ s.t. $\sigma(g)=h$

$$
\text { and } \sigma\left(s_{i}\right)=t_{i} \text { and } \sigma \circ \tau\left(s_{i}\right)=\tau\left(t_{i}^{\prime}\right)
$$

Let $u_{i} \in F_{S}$ be words s.t. $u_{i} \in \operatorname{ker}\left(\eta_{i}\right)$. We construct

$$
\psi_{g, h}\left(x_{1}, \ldots, x_{k}\right)=\forall y_{1}, \ldots, y_{k} \zeta\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right) \rightarrow \bigwedge_{i} \neg \varphi_{u_{i}}^{\prime}\left(1, y_{1}, \ldots, y_{k}\right)
$$

Let σ be an homomorphism and $t_{1}, \ldots, t_{k} \in F_{S}$ s.t. $\sigma\left(s_{i}\right)=t_{i}$. If $F_{S} \vDash$ $\psi_{g, h}\left(t_{1}, \ldots, t_{k}\right)$ we can conclude σ is injective because of Theorem 12.

We are left with two assignments

1. Construct ζ.
2. Prove that $F_{S} \vDash \varphi_{g}^{\prime}\left(g, s_{1}, \ldots, s_{k}\right) \wedge \psi_{g, h}\left(s_{1}, \ldots, s_{k}\right)$

We won't prove 1. There is a JSJ decomposition of F_{S} relative to $\langle g\rangle<F_{S}$. We analyze the way in which Dehn twists act on the vertex groups of the JSJ decomposition. For regular vertex groups the Dehn twist conjugate by an element of F_{S}. Some of the amalgamation products come from splitting a surface along a simple curve. In this case the Dehn twist act as an automorphism of the surface group. If the amalgamation product doesn't come from splitting a surface the Dehn twist conjugates the surface group. Let $\tau \in \operatorname{Mod}_{\langle g\rangle}\left(F_{S}\right)$ be a modular automorphism and $K \leq F_{S}$ is regular vertex subgroup then there is a $f \in F_{S}$ s.t. $\tau(k)=f k f^{-1}$ for every $k \in K$. Let $H \leq F_{S}$ be a surface vertex subgroup then $\tau(H)=f H f^{-1}$ (f is different) but it doesn't necessarily conjugate every single elements. Let $\sigma: F_{S} \rightarrow F_{S}$ be a homomorphism then for $k \in K$ we have $\sigma \circ \tau(k)=\sigma\left(f k f^{-1}\right)=\sigma(f) \sigma(k) \sigma(f)^{-1}$. For H we have that subgroup $\sigma \circ \tau(H)$ is conjugate to the subgroup $\sigma(H)$. So $\sigma(H)$ is abelian iff $\sigma \circ \tau(H)$ is abelian. Each vertex in the JSJ decomposition gives us a set of generators. The edges of
the JSJ decomposition give us relations between the generators. Now we can write $F_{S} \cong\left\langle a_{1}, \ldots, a_{k} \mid r_{1}, \ldots, r_{j}\right\rangle$. The relation can be expressed as a set of equations $\Sigma\left(x_{1}, \ldots, x_{k}\right)=\bigwedge_{i=1}^{j} \varphi_{r_{i}}^{\prime}\left(1, x_{1}, \ldots, x_{k}\right)$. We construct the formulas

$$
\begin{aligned}
\zeta_{R V \text { ertex }}\left(x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{l}\right) & =\exists z \bigwedge_{i} z x_{i} z^{-1}=y_{i} \\
\zeta_{\text {SVertex }}\left(x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{l}\right) & =\left(\bigwedge_{i, j=1}^{l}\left[x_{i}, x_{j}\right]=1\right) \longleftrightarrow\left(\bigwedge_{i, j=1}^{l}\left[y_{i}, y_{j}\right]=1\right)
\end{aligned}
$$

Let a_{1}, \ldots, a_{l} a subset of generators from a regular vertex group and let $t_{1}, \ldots, t_{l}, t_{1}^{\prime}, \ldots, t_{l}^{\prime} \in$ F_{S} be elements s.t. $\sigma\left(a_{i}\right)=t_{i}$ and $\sigma \circ \tau\left(a_{i}\right)=t_{i}^{\prime}$. Then $F_{S} \vDash \zeta_{R V e r t e x}\left(t_{1}, \ldots, t_{l}, t_{1}^{\prime}, \ldots, t_{l}^{\prime}\right)$. Let b_{1}, \ldots, b_{l} be a subset of generators from a surface group and let $t_{1}, \ldots, t_{l}, t_{1}^{\prime}, \ldots, t_{l}^{\prime} \in$ F_{S} be elements s.t. $\sigma\left(b_{i}\right)=t_{i}$ and $\sigma \circ \tau\left(b_{i}\right)=t_{i}^{\prime}$ then $F_{S} \vDash \zeta_{S V \text { ertex }}\left(t_{1}, \ldots, t_{l}, t_{1}^{\prime}, \ldots, t_{l}^{\prime}\right)$. For each vertex on the JSJ decomposition we construct one of these two formulas so
$\zeta\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right)=\bigwedge_{i} \zeta_{R V \text { ertex }}\left(x_{1}, \ldots, x_{l_{i}}, y_{1}, \ldots, y_{l_{i}}\right) \bigwedge_{i} \zeta_{S V \text { ertex }}\left(x_{1}, \ldots, x_{l_{i}}, y_{1}, \ldots, y_{l_{i}}\right)$
To put it all together. We write g as a word w_{g} in the generators from the JSJ decomposition so the final formuls is $\varphi_{g}^{\prime}\left(z, x_{1}, \ldots, x_{l}\right) \wedge \Sigma\left(x_{1}, \ldots, x_{l}\right) \wedge \psi_{g h}\left(x_{1}, \ldots, x_{l}\right)$.

