Ampleness of the free group First order theory of the free group seminar notes

Leor Neuhauser

March 19, 2019

Def 1: a stable theory T is n -ample if (after adding some parameters) there are in some large enough model $a_{1}, . ., a_{n}$ s.t.

1. a_{0} forks with a_{n} over \emptyset (really over the added parameters)
2. a_{i+1} does not fork with $a_{0}, . ., a_{i-1}$ over a_{i} for $1 \leq i<n$
3. $\operatorname{acleq}\left(a_{0}\right) \cap \operatorname{acl}^{e q}\left(a_{1}\right)=a c l^{e q}(\emptyset)$
4. $\operatorname{acl}^{e q}\left(a_{0}, \ldots, a_{i-1}, a_{i}\right) \cap \operatorname{acl}^{e q}\left(a_{0}, \ldots, a_{i-1}, a_{i+1}\right)=\operatorname{acl}^{e q}\left(a_{0}, \ldots, a_{i-1}\right)$ for $1 \leq$ $i<n$

The "eq" means that we work in an expanded structure $M^{e q}$, that we'll define (somewhat informally) shortly.

Def 2: a tuple c is a canonocal parameter of a definable (with parameters) set $D \subset M^{n}$ if $\phi(M, c)=D$ and for $c^{\prime} \neq c \phi\left(M, c^{\prime}\right) \neq D$. If every definable set has a canonical parameter we say the theory has elimination of imaginaries (EI).

Fact 1: If every equivalence class of every \emptyset-definable equivalence relation on M^{n} has a canonical parameter then the theory eliminates imaginaries.

Fact 2: if a is a canonical parameter of D, then b is also a canonical parameters of D iff a, b are inter-definable $a \in \operatorname{dcl}(b), b \in \operatorname{dcl}(a)$.

We want every definable set to have a canonical parameter, it is enough to add a canonical parameter for every equivalence relation.

Def 3: We'll buid $M^{e q}$ as an expansion of M. For every \emptyset-definable equivalence relation E on M^{n}, add as elements the equivalnce classes of E. Those new elements are called imaginaries. Also add to the language the projections $\pi_{E}: M^{n} \rightarrow M^{n} / E$.

Fact 3: $M^{e q}$ eliminiates imaginaries
Cor 1: M has elimination of imagenries iff every imaginary is inter-definable with a real tuple.

Def 4: $a c l^{e q}, d c l^{e q}$ are $a c l, d c l$ taken in $M^{e q}$.

Def 5: M has weak EI if for every imaginary $e \in M^{e q}$ there is real tuple $c \in M$ s.t. $e \in d c l^{e q} \overline{(c) \text { and } c \in \operatorname{acl}^{e q}(e) \text {. } . ~ . ~ . ~}$

Note: for our purposes, we only look at $\mathrm{acl}^{e q}$,so weak EI is sufficent.
We want to expand the theory of free groups with only mild equivalence relations so that it would have weak EI

Def 6: Let \mathbb{F} be a non abelian free group. the following equivalence relations are called basic:

- (conjugation) $a E_{1} b$ iff $\exists g: g^{-1} a g=b$
- (m-left-coset) $\left(a_{1}, b_{1}\right) E_{2}^{m}\left(a_{2}, b_{2}\right)$ iff $b_{1}=b_{2}=1$ or else $C\left(b_{1}\right)=C\left(b_{2}\right)=\langle b\rangle$ and $a_{1}^{-1} a_{2} \in\left\langle b^{m}\right\rangle$.
- (m-right-coset) $\left(a_{1}, b_{1}\right) E_{3}^{m}\left(a_{2}, b_{2}\right)$ iff $b_{1}=b_{2}=1$ or else $C\left(b_{1}\right)=C\left(b_{2}\right)=$ $\langle b\rangle$ and $a_{1} a_{2}^{-1} \in\left\langle b^{m}\right\rangle$.
- (m,n-bicoset) $\left(a_{1}, b_{1}, c_{1}\right) E_{4}^{\text {m.n }}\left(a_{2}, b_{2}, c_{2}\right)$ iff $a_{1}=a_{2}=1$ or $c_{1}=c_{2}=1$ or else $C\left(a_{1}\right)=C\left(a_{2}\right)=\langle a\rangle, C\left(c_{1}\right)=C\left(c_{2}\right)=\langle c\rangle$ and $\exists g \in\left\langle a^{m}\right\rangle, h \in\left\langle c^{n}\right\rangle$: $g b_{1} h=b_{2}$.

Thm: Denote $\mathbb{F}^{w e}$ the expansion of \mathbb{F} by the equivalence classes of basic equivalence relations. $\mathbb{F}^{w e}$ has weak EI.

Thm: For every n, the theory of the free group is n-ample.
Proof: Work in $\mathbb{F}=\mathbb{F}_{2 n+3}=\left\langle e_{1}, . ., e_{2 n+3}\right\rangle$ over the parameter e_{1}, e_{2} and build $a_{0}, . ., a_{n}$ by

$$
\begin{gathered}
a_{0}=e_{3} \\
a_{1}=a_{0}\left[e_{4}, e_{5}\right]=e_{3}\left[e_{4}, e_{5}\right] \\
\vdots \\
a_{n}=a_{n-1}\left[e_{2 n+2}, e_{2 n+3}\right]=e_{3}\left[e_{4}, e_{5}\right] \ldots\left[e_{2 n+2}, e_{2 n+3}\right]
\end{gathered}
$$

Reminder: We say that an element g is generic over parameters A if every formula in $\operatorname{tp}(g / A)$ is genric, where a definable set is generic if it has finitely many left translates that cover the whole group. In the free group, an element is generic if it satisfies the unique generic type. As we've seen in Rachel's lecture (proposition 0.5 in here notes) e_{i+1} is generic over $e_{1}, . ., e_{i}$. We will use a strengthend version of this.

Thm (Pillay): $b_{1}, . ., b_{k}$ can be extended to a basis iff they are independent (do not fork with each other) and generic.

Prop 1: a_{0} forks with a_{n} over e_{1}, e_{2}.
Proof: $a_{0}=e_{3}$ is generic over e_{1}, e_{2}, and $e_{1}, e_{2}, e_{4}, \ldots, e_{2 n+2}, e_{2 n+3}, a_{n}$ is a basis of $\mathbb{F}_{2 n+3}$ so by Pillay a_{n} is generic over e_{1}, e_{2}. If we would have
also a_{0} d.n.f.w. a_{n} over e_{1}, e_{2}, so by Pillay we would get that $e_{1}, e_{2}, a_{0}, a_{n}$ could be extended to a basis, $e_{1}, e_{2}, e_{3}, a_{n}, b_{1}, \ldots b_{2 n-1}$. In particular in the abelization $\mathbb{F} /[\mathbb{F}, \mathbb{F}] \simeq \mathbb{Z}^{2 n+3}$ and the image under the quoitent of the basis $\overline{e_{1}}, \overline{e_{2}}, \overline{e_{3}}, \overline{a_{n}}, \overline{b_{1}}, \ldots b_{2 n-1}$ is a generating set. But

$$
\overline{a_{n}}=\overline{e_{3}}\left[\overline{e_{4}},-e_{5}\right] \ldots\left[e_{2 n+2}, \overline{e_{2 n+3}}\right]=\overline{e_{3}}
$$

contradiction.
Prop 2: a_{i+1} does not fork with $a_{0}, . ., a_{i-1}$ over a_{i}, e_{1}, e_{2} for $1 \leq i<n$
Proof: By Pillay $e_{2 i+4}, e_{2 i+5}$ dnf with $e_{1}, \ldots, e_{2 i+3}$. we can switch any side of this relation with things from it's algebraic closure to get $e_{2 i+4}, e_{2 i+5}$ dnf with $e_{1}, e_{2}, a_{0}, \ldots, a_{i}$ so by lowering things to parameters $e_{2 i+4}, e_{2 i+5} \mathrm{dnf} / e_{1}, e_{2}, a_{i}$ with a_{0}, \ldots, a_{i-1}, so by raising some parameters to the right $e_{2 i+4}, e_{2 i+5} a_{i} \operatorname{dnf} / e_{1}, e_{2}, a_{i}$ with a_{0}, \ldots, a_{i-1}, and lastly by the fact $a_{i+1}=a_{i}\left[e_{2 i+4}, e_{2 i+5}\right]$ so we get a_{i+1} $\operatorname{dnf} / e_{1}, e_{2}, a_{i}$ with a_{0}, \ldots, a_{i-1}, as needed.

Prop 3: $\operatorname{acl}^{e q}\left(e_{1}, e_{2}, a_{0}\right) \cap \operatorname{acl}^{e q}\left(e_{1}, e_{2}, a_{1}\right)=\operatorname{acl}^{e q}\left(e_{1}, e_{2}\right)$
Lemma: $\operatorname{acl}\left(e_{1}, e_{2}, a_{i}\right)=\left\langle e_{1}, e_{2}, a_{i}\right\rangle,(i=0,1)$
Pf Lemma: e_{1}, e_{2}, a_{i} can be extended to a basis,

$$
e_{1}, e_{2}, a_{i}, e_{4}, \ldots, e_{2 n+3}
$$

for $i=0 a_{0}=e_{3}$ so it is clearly a basis. For $i=1 a_{1}=e_{3}\left[e_{4}, e_{5}\right]$ so $e_{3} \in\left\langle a_{1}, e_{4}, e_{5}\right\rangle$, thus those $2 n+3$ elements generate all \mathbb{F},so they are a basis. in praticular $\left\langle e_{1}, e_{2}, a_{i}\right\rangle$ is a free factor of, $\operatorname{so} \operatorname{acl}\left(e_{1}, e_{2}, a_{i}\right) \subset\left\langle e_{1}, e_{2}, a_{i}\right\rangle$. the other direction is clear.

Pf Prop 3: For real elements,

$$
\operatorname{acl}\left(e_{1}, e_{2}, a_{0}\right) \cap \operatorname{acl}\left(e_{1}, e_{2}, a_{1}\right)=\left\langle e_{1}, e_{2}, a_{0}\right\rangle \cap\left\langle e_{1}, e_{2}, a_{1}\right\rangle \supset\left\langle e_{1}, e_{2}\right\rangle
$$

$\left\langle e_{1}, e_{2}, a_{0}\right\rangle \cap\left\langle e_{1}, e_{2}, a_{i}\right\rangle$ is a free factor of order either 2 or 3 . If it's order was 3 , then it would mean $\left\langle e_{1}, e_{2}, a_{0}\right\rangle=\left\langle e_{1}, e_{2}, a_{1}\right\rangle$, but it can't be because e_{4}, e_{5} don't show in $\left\langle e_{1}, e_{2}, e_{3}\right\rangle$. Thus the order is 2 and $\left\langle e_{1}, e_{2}, a_{0}\right\rangle \cap\left\langle e_{1}, e_{2}, a_{1}\right\rangle=$ $\left\langle e_{1}, e_{2}\right\rangle=\operatorname{acl}\left(e_{1}, e_{2}\right)$.

For imaginary elements, we only look at acl so weak EI is enough, so we only need to check the basic equivalence classes. (Free factors are elementary substructures, so the $a c l^{e q}$ in the big structure is the same as the $a c l^{e q}$ in the small structure).

- For conjugation, suppose $e \in \mathbb{F} / E_{1}$ s.t. $e \in \operatorname{acl}^{e q}\left(e_{1}, e_{2}, a_{0}\right) \cap a c l^{e q}\left(e_{1}, e_{2}, a_{1}\right)$. $e=[g]_{E_{1}}=[h]_{E_{1}}$ for $g \in\left\langle e_{1}, e_{2}, a_{0}\right\rangle, h \in\left\langle e_{1}, e_{2}, a_{1}\right\rangle$. We can assume WLOG g, h are in cyclically reduced forms

$$
\begin{gathered}
g=w_{1}\left(e_{1}, e_{2}\right) a_{0}^{k_{1}} w_{2}\left(e_{1}, e_{2}\right) a_{0}^{k_{2}} \ldots w_{r}\left(e_{1}, e_{2}\right) a_{0}^{k_{r}} \\
h=v_{1}\left(e_{1}, e_{2}\right) a_{1}^{l_{1}} v_{2}\left(e_{1}, e_{2}\right) a_{1}^{l_{2}} \ldots v_{s}\left(e_{1}, e_{2}\right) a_{1}^{l_{s}}
\end{gathered}
$$

but g, h are congugates, so their cyc reduced forms should be cyclic permutation of each other. In praticular $h \in\left\langle e_{1}, e_{2}, a_{0}\right\rangle$, so $h \in\left\langle e_{1}, e_{2}\right\rangle$. thus $e=[h]_{E_{1}} \in \operatorname{acl}^{e q}\left(e_{1}, e_{2}\right)$.

- For m-left-coset, suppose $e \in \mathbb{F} / E_{2}^{m}$ s.t. $e \in \operatorname{acl} l^{e q}\left(e_{1}, e_{2}, a_{0}\right) \cap a c l^{e q}\left(e_{1}, e_{2}, a_{1}\right)$. $e=\left[g_{1}, g_{2}\right]_{E_{2}^{m}}=\left[h_{1}, h_{2}\right]_{E_{2}^{m}}$ for $g_{i} \in\left\langle e_{1}, e_{2}, a_{0}\right\rangle, h_{i} \in\left\langle e_{1}, e_{2}, a_{1}\right\rangle$. We have $\left(g_{1}, g_{2}\right) E_{2}^{m}\left(h_{1}, h_{2}\right)$, i.e. either $g_{2}=h_{2}=1$, and then $\left(g_{1}, 1\right) E_{2}^{m}(1,1) \in$ $\left\langle e_{1}, e_{2}\right\rangle$, or else $C\left(g_{2}\right)=C\left(h_{2}\right)=\langle b\rangle$ and $g_{1}^{-1} h_{1} \in\left\langle b^{m}\right\rangle . C\left(g_{2}\right) \subset$ $\left\langle e_{1}, e_{2}, a_{0}\right\rangle, C\left(h_{2}\right) \subset\left\langle e_{1}, e_{2}, a_{1}\right\rangle$, so $b \in\left\langle e_{1}, e_{2}\right\rangle . g_{2}, h_{2} \in\langle b\rangle \subset\left\langle e_{1}, e_{2}\right\rangle$ and $g_{1}^{-1} h_{1} \in\left\langle b^{m}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle$ so $h_{1} \in\left\langle e_{1}, e_{2}, a_{0}\right\rangle \cdot\left\langle e_{1}, e_{2}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle$. $h_{i} \in\left\langle e_{1}, e_{2}\right\rangle$, so

$$
e=\left[h_{1}, h_{2}\right]_{E_{2}^{m}} \in \operatorname{acl}^{e q}\left(e_{1}, e_{2}\right)
$$

- the same for right and double cosets.

Prop 4: $\operatorname{acl}^{e q}\left(e_{1}, e_{2}, a_{0}, \ldots, a_{i-1}, a_{i}\right) \cap a c l^{e q}\left(e_{1}, e_{2}, a_{0}, \ldots, a_{i-1}, a_{i+1}\right)=a c l^{e q}\left(e_{1}, e_{2}, a_{0}, \ldots, a_{i-1}\right)$ for $1 \leq i<n$

Lemma 1: Suppose $\gamma \in \operatorname{acl}^{e q}\left(e_{1}, e_{2}, a_{0}, \ldots, a_{i-1}, a_{i}\right)$;

- if γ is real $\gamma \in\left\langle e_{1}, e_{2}, a_{0}, \ldots, a_{i-1}, a_{i}\right\rangle=: A$
- if $\gamma=[c]_{E}$ for a basic E then $\exists d \in A$ s.t. $\gamma=[d]_{E}$ (i.e. $[c]_{E} \cap A \neq \emptyset$).

Note: We can't use the "trick" with free factor because A is not necessarily a free factor.

Proof: Notice that $A=\left\langle e_{1}, e_{2}, e_{3},\left[e_{4}, e_{5}\right], \ldots,\left[e_{2 i+2}, e_{2 i+3}\right]\right\rangle$ look at the graph of groups

We have
$\mathbb{F}_{2 i+3}=\left(\left(\left(A *_{\left[e_{2 i+2}, e_{2 i+3}\right]}\left\langle e_{2 i+2}, e_{2 i+3}\right\rangle\right) *_{\left[e_{2 i}, e_{2 i+1}\right]}\left\langle e_{2 i}, e_{2 i+1}\right\rangle\right) \ldots\right) *_{\left[e_{4}, e_{5}\right]}\left\langle e_{4}, e_{5}\right\rangle$
If we have a JSJ decombosition with one of the vertices cointaining A, then that vertice is $\operatorname{acl}(A)$. By the universal property we can collapse the $J S J$ to get the above graph. In this graph A is a vertice, so it must be that $A=\operatorname{acl}(A)$ proving the first point. for imaginaries,
if $\gamma=[c]_{E_{1}}$: Write $A_{0}=A, A_{l+1}=A_{l} \psi_{\left[e_{2(i-l)+2}, e_{2(i-l)+3}\right]}\left\langle e_{2(i-l)+2}, e_{2(i-l)+3}\right\rangle$. Suppose $l \leq i$ is the minimal s.t. $[c]_{E_{1}} \cap A_{l} \neq \emptyset$. Asumme by contadiction $l>0$, WLOG just assume $l=i$. We can assume (up to conjugation) that c is in
cyclically reduced form with respect to $A_{i-1} *_{\left[e_{4}, e_{5}\right]}\left\langle e_{4}, e_{5}\right\rangle, c=c_{1} \cdot \ldots \cdot c_{m}$. By the minimality assumption $c_{i} \notin A_{i-1}=\left\langle e_{1}, e_{2}, e_{3},\left[e_{4}, e_{5}\right], e_{6}, \ldots, e_{2 i+3}\right\rangle$. for some $j \leq m c_{j} \notin A_{i-1}$.s

To get a contradiction, we would like to show that $[c]_{E_{1}}$ has infinitley many orbits under $A u t_{A}\left(\mathbb{F}_{2 i+3}\right)$, i.e. the orbit of c has infinitley many conjugacey classes. we would have liked to use dehn twists, but the orbit under dehn twists may have only finitely many conj classes. So we use a more complicated homeomorphism of the surface, a pseudo-Anosov homeomorphism $h . h$ can be extended to an automorphism of $\mathbb{F}_{2 i+3}$ by preserving A_{i-1}, in praticular preserving A. We have $\left\{\left[h^{k}(c)\right]_{E_{1}} \mid k<\omega\right\}$ is finite. .there is an infinite $I \subset \omega$ s.t. c and $h^{k}(c)$ are conjugates for any $k \in I$.

- If $m=1$, then $c=c_{1} \in\left\langle e_{4}, e_{5}\right\rangle \backslash\left\langle\left[e_{4}, e_{5}\right]\right\rangle\left\langle e_{4}, e_{5}\right\rangle$ is a free factor so for every $k \in I c$ and $h^{k}(c)$ must be conjugates in $\left\langle e_{4}, e_{5}\right\rangle$, in contadiction to one of the properties of pseudo-Anosov (if $I \subset \omega$ is infinite, $\left\{h^{k}(c) \mid k \in I\right\}$ has infinite conjugation classes)
- If $m>1$, then $\forall k \in I h^{k}(c)=h^{k}\left(c_{1}\right) \cdot \ldots \cdot h^{k}\left(c_{m}\right)$ is conjugate to $c_{1} \cdot \ldots \cdot c_{m}$, which is in cyclicly reduced form, so $h^{k}(c)$ is obtained from c by a cyclic permutation and then conjugation from the boundary, $h^{k}(c)=$ $b_{k}^{-1} c_{p_{k}(1)} \ldots c_{p_{k}(m)} b_{k}$ for p_{k} a cyc permutation and $b \in\left\langle\left[e_{4}, e_{5}\right]\right\rangle$. this contradicts another property of pseudo-Anosov.

For the other basic eq classes the proof goes in similar ways.
Remark: Lemma 1 aplies also to $\mathrm{acl}^{e q}\left(e_{1}, e_{2}, a_{0}, \ldots, a_{i-1}, a_{i}\right)$.
Lemma 2: Suppose $\gamma \in \operatorname{acl}^{e q}\left(e_{1}, e_{2}, a_{0}, \ldots, a_{i-1}, a_{i+1}\right)$;

- if γ is real $\gamma \in\left\langle e_{1}, e_{2}, a_{0}, \ldots, a_{i-1}, a_{i+1}\right\rangle=: A$
- if $\gamma=[c]_{E}$ for a basic E then $\exists d \in A$ s.t. $\gamma=[d]_{E}$.

Pf Lemma 2: The proof goes the same, except we need to look at the graphs of groups

Pf Prop 4: Denote $A=\left\langle e_{1}, e_{2}, a_{0}, \ldots, a_{i-1}, a_{i}\right\rangle=\left\langle e_{1}, e_{2}, e_{3},\left[e_{4}, e_{5}\right], \ldots,\left[e_{2 i+2}, e_{2 i+3}\right]\right\rangle$
$B=\left\langle e_{1}, e_{2}, a_{0}, \ldots, a_{i-1}, a_{i+1}\right\rangle=\left\langle e_{1}, e_{2}, e_{3},\left[e_{4}, e_{5}\right], \ldots,\left[e_{2 i}, e_{2 i+1}\right],\left[e_{2 i+2}, e_{2 i+3}\right]\left[e_{2 i+4}, e_{2 i+5}\right]\right\rangle$
Suppose $\gamma \in \operatorname{acl}^{e q}(A) \cap \operatorname{acl}^{e q}(B)$. If γ is real, $\gamma \in A \cap B . \gamma \in \mathbb{F}_{2 i+5}=$ $\left\langle e_{1}, e_{2}, . ., e_{2 i+1}\right\rangle *\left\langle e_{2 i+2}, . ., e_{2 i+5}\right\rangle$, we can write γ in a normal form with respect to this splitting $\gamma=c_{1} b_{1} \ldots c_{m} b_{m} . c_{j} \in\left\langle e_{1}, e_{2}, . ., e_{2 i+1}\right\rangle, b_{j} \in\left\langle e_{2 i+2}, . ., e_{2 i+5}\right\rangle$. Because $\gamma \in A \cap B$ we have $b_{j} \in\left\langle\left[e_{2 i+2}, e_{2 i+3}\right]\right\rangle \cap\left\langle\left[e_{2 i+2}, e_{2 i+3}\right]\left[e_{2 i+4}, e_{2 i+5}\right]\right\rangle$, so the b_{j} must be trivial and $\gamma \in\left\langle e_{1}, e_{2}, . ., e_{2 i+1}\right\rangle \cap A \cap B \subset\left\langle e_{1}, e_{2}, e_{3},\left[e_{4}, e_{5}\right], \ldots,\left[e_{2 i}, e_{2 i+1}\right]\right\rangle$ as needed.

If γ is a E_{1} equivalence class, by lemma $1+2$ we can write $\gamma=[c]_{E_{1}}=[d]_{E_{1}}$ for $c \in A, d \in B$. We can assume that c, d are in cyc reduced form w.r.t the splitting $\left\langle e_{1}, e_{2}, . ., e_{2 i+1}\right\rangle *\left\langle e_{2 i+2}, . ., e_{2 i+5}\right\rangle c$ and d must be cyclic permutations of each other, so like before they must both live in $\left\langle e_{1}, e_{2}, . ., e_{2 i+1}\right\rangle$, thus they must both live in $\left\langle e_{1}, e_{2}, e_{3},\left[e_{4}, e_{5}\right], \ldots,\left[e_{2 i}, e_{2 i+1}\right]\right\rangle$ so $\gamma \in \operatorname{acl} l^{e q}\left(e_{1}, e_{2}, e_{3},\left[e_{4}, e_{5}\right], \ldots,\left[e_{2 i}, e_{2 i+1}\right]\right)$
similarly if γ is a E_{2}^{m} equivalence class, by lemma $1+2$ we can write $\gamma=$ $\left[c_{1}, c_{2}\right]_{E}=\left[d_{1}, d_{2}\right]$ for $c_{1}, c_{2} \in A, d_{1}, d_{2} \in B$. if $c_{2}=d_{2}=1$ it is obvious, else $C\left(c_{2}\right)=C\left(d_{2}\right)=\langle b\rangle$, and $c_{1}^{-1} d_{1} \in\left\langle b^{m}\right\rangle$. It must be that $b \in A \cap B=$ $\left\langle e_{1}, e_{2}, e_{3},\left[e_{4}, e_{5}\right], \ldots,\left[e_{2 i}, e_{2 i+1}\right]\right\rangle$ so $d_{1}, d_{2} \in\left\langle e_{1}, e_{2}, e_{3},\left[e_{4}, e_{5}\right], \ldots,\left[e_{2 i}, e_{2 i+1}\right]\right\rangle$ as needed.

