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Def 1: a stable theory T is n-ample if (after adding some parameters) there
are in some large enough model a1, .., an s.t.

1. a0 forks with anover ∅ (really over the added parameters)

2. ai+1does not fork with a0, .., ai−1over ai for 1 ≤ i < n

3. acleq(a0) ∩ acleq(a1) = acleq(∅)

4. acleq(a0, ..., ai−1, ai) ∩ acleq(a0, ..., ai−1, ai+1) = acleq(a0, ..., ai−1) for 1 ≤
i < n

The ”eq” means that we work in an expanded structure Meq, that we'll de�ne
(somewhat informally) shortly.

Def 2: a tuple c is a canonocal parameter of a de�nable (with parameters)
set D ⊂ Mn if φ(M, c) = D and for c′ 6= c φ(M, c′) 6= D. If every de�nable
set has a canonical parameter we say the theory has elimination of imaginaries
(EI).

Fact 1: If every equivalence class of every ∅-de�nable equivalence relation
on Mn has a canonical parameter then the theory eliminates imaginaries.

Fact 2: if a is a canonical parameter of D, then b is also a canonical param-
eters of D i� a, b are inter-de�nable a ∈ dcl(b), b ∈ dcl(a).

We want every de�nable set to have a canonical parameter, it is enough to
add a canonical parameter for every equivalence relation.

Def 3: We'll buid Meq as an expansion of M . For every ∅-de�nable equiv-
alence relation E on Mn, add as elements the equivalnce classes of E. Those
new elements are called imaginaries. Also add to the language the projections
πE : Mn →Mn/E.

Fact 3: Meq eliminiates imaginaries
Cor 1: M has elimination of imagenries i� every imaginary is inter-de�nable

with a real tuple.
Def 4: acleq, dcleq are acl, dcl taken in Meq.
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Def 5: M has weak EI if for every imaginary e ∈ Meq there is real tuple
c ∈M s.t. e ∈ dcleq(c) and c ∈ acleq(e).

Note: for our purposes, we only look at acleq,so weak EI is su�cent.
We want to expand the theory of free groups with only mild equivalence

relations so that it would have weak EI
Def 6: Let F be a non abelian free group. the following equivalence relations

are called basic:

• (conjugation) aE1b i� ∃g : g−1ag = b

• (m-left-coset) (a1, b1)Em
2 (a2, b2) i� b1 = b2 = 1 or else C(b1) = C(b2) = 〈b〉

and a−11 a2 ∈ 〈bm〉.

• (m-right-coset) (a1, b1)Em
3 (a2, b2) i� b1 = b2 = 1 or else C(b1) = C(b2) =

〈b〉 and a1a−12 ∈ 〈bm〉.

• (m,n-bicoset) (a1, b1, c1)Em.n
4 (a2, b2, c2) i� a1 = a2 = 1 or c1 = c2 = 1 or

else C(a1) = C(a2) = 〈a〉, C(c1) = C(c2) = 〈c〉 and ∃g ∈ 〈am〉, h ∈ 〈cn〉 :
gb1h = b2.

Thm: Denote Fwe the expansion of F by the equivalence classes of basic equiv-
alence relations. Fwe has weak EI.

Thm: For every n, the theory of the free group is n-ample.
Proof: Work in F = F2n+3 = 〈e1, .., e2n+3〉 over the parameter e1, e2 and

build a0, .., an by

a0 = e3

a1 = a0[e4, e5] = e3[e4, e5]

...

an = an−1[e2n+2, e2n+3] = e3[e4, e5]...[e2n+2, e2n+3]

Reminder: We say that an element g is generic over parameters A if every
formula in tp(g/A) is genric, where a de�nable set is generic if it has �nitely
many left translates that cover the whole group. In the free group, an element
is generic if it satis�es the unique generic type. As we've seen in Rachel's
lecture (proposition 0.5 in here notes) ei+1 is generic over e1, .., ei.We will use a
strengthend version of this.

Thm (Pillay): b1, .., bk can be extended to a basis i� they are independent
(do not fork with each other) and generic.

Prop 1: a0 forks with anover e1, e2.
Proof: a0 = e3 is generic over e1, e2, and e1, e2, e4, ..., e2n+2, e2n+3, an is

a basis of F2n+3 so by Pillay an is generic over e1, e2. If we would have
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also a0 d.n.f.w. an over e1, e2, so by Pillay we would get that e1, e2, a0, an
could be extended to a basis, e1, e2, e3, an, b1, ...b2n−1. In particular in the
abelization F/[F,F] ' Z2n+3 and the image under the quoitent of the basis
ē1, ē2, ē3, ān, b̄1, ... ¯b2n−1 is a generating set. But

ān = ē3 ¯[e4, e5]... ¯[e2n+2, e2n+3] = ē3

contradiction.
Prop 2: ai+1does not fork with a0, .., ai−1over ai, e1, e2 for 1 ≤ i < n
Proof: By Pillay e2i+4, e2i+5 dnf with e1, ..., e2i+3. we can switch any side of

this relation with things from it's algebraic closure to get e2i+4, e2i+5 dnf with
e1, e2, a0, ..., ai so by lowering things to parameters e2i+4, e2i+5 dnf/e1, e2, ai
with a0, ..., ai−1, so by raising some parameters to the right e2i+4, e2i+5ai dnf/e1, e2, ai
with a0, ..., ai−1, and lastly by the fact ai+1 = ai[e2i+4, e2i+5] so we get ai+1

dnf/e1, e2, ai with a0, ..., ai−1, as needed.
Prop 3: acleq(e1, e2, a0) ∩ acleq(e1, e2, a1) = acleq(e1, e2)
Lemma: acl(e1, e2, ai) = 〈e1, e2, ai〉, (i = 0, 1)
Pf Lemma: e1, e2, ai can be extended to a basis,

e1, e2, ai, e4, ..., e2n+3

for i = 0 a0 = e3 so it is clearly a basis. For i = 1 a1 = e3[e4, e5] so
e3 ∈ 〈a1, e4, e5〉, thus those 2n + 3 elements generate all F,so they are a basis.
in praticular 〈e1, e2, ai〉 is a free factor of , so acl(e1, e2, ai) ⊂ 〈e1, e2, ai〉. the
other direction is clear.

Pf Prop 3: For real elements,

acl(e1, e2, a0) ∩ acl(e1, e2, a1) = 〈e1, e2, a0〉 ∩ 〈e1, e2, a1〉 ⊃ 〈e1, e2〉

〈e1, e2, a0〉∩ 〈e1, e2, ai〉 is a free factor of order either 2 or 3. If it's order was
3, then it would mean 〈e1, e2, a0〉 = 〈e1, e2, a1〉, but it can't be because e4, e5
don't show in 〈e1, e2, e3〉. Thus the order is 2 and 〈e1, e2, a0〉 ∩ 〈e1, e2, a1〉 =
〈e1, e2〉 = acl(e1, e2).

For imaginary elements, we only look at acl so weak EI is enough, so we
only need to check the basic equivalence classes. (Free factors are elementary
substructures, so the acleqin the big structure is the same as the acleq in the
small structure).

• For conjugation, suppose e ∈ F/E1 s.t. e ∈ acleq(e1, e2, a0)∩acleq(e1, e2, a1).
e = [g]E1

= [h]E1
for g ∈ 〈e1, e2, a0〉, h ∈ 〈e1, e2, a1〉. We can assume

WLOG g, h are in cyclically reduced forms

g = w1(e1, e2)ak1
0 w2(e1, e2)ak2

0 ...wr(e1, e2)akr
0

h = v1(e1, e2)al11 v2(e1, e2)al21 ...vs(e1, e2)als1

but g, h are congugates, so their cyc reduced forms should be cyclic per-
mutation of each other. In praticular h ∈ 〈e1, e2, a0〉, so h ∈ 〈e1, e2〉 . thus
e = [h]E1 ∈ acleq(e1, e2).
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• For m-left-coset, suppose e ∈ F/Em
2 s.t. e ∈ acleq(e1, e2, a0)∩acleq(e1, e2, a1).

e = [g1, g2]Em
2

= [h1, h2]Em
2

for gi ∈ 〈e1, e2, a0〉, hi ∈ 〈e1, e2, a1〉. We have
(g1, g2)Em

2 (h1, h2), i.e. either g2 = h2 = 1, and then (g1, 1)Em
2 (1, 1) ∈

〈e1, e2〉, or else C(g2) = C(h2) = 〈b〉 and g−11 h1 ∈ 〈bm〉. C(g2) ⊂
〈e1, e2, a0〉, C(h2) ⊂ 〈e1, e2, a1〉, so b ∈ 〈e1, e2〉. g2, h2 ∈ 〈b〉 ⊂ 〈e1, e2〉
and g−11 h1 ∈ 〈bm〉 ⊂ 〈e1, e2〉 so h1 ∈ 〈e1, e2, a0〉 · 〈e1, e2〉 ⊂ 〈e1, e2〉.
hi ∈ 〈e1, e2〉, so

e = [h1, h2]Em
2
∈ acleq(e1, e2)

• the same for right and double cosets.

Prop 4: acleq(e1, e2, a0, ..., ai−1, ai)∩acleq(e1, e2, a0, ..., ai−1, ai+1) = acleq(e1, e2, a0, ..., ai−1)
for 1 ≤ i < n

Lemma 1: Suppose γ ∈ acleq(e1, e2, a0, ..., ai−1, ai);

• if γ is real γ ∈ 〈e1, e2, a0, ..., ai−1, ai〉 =: A

• if γ = [c]E for a basic E then ∃d ∈ A s.t. γ = [d]E (i.e. [c]E ∩A 6= ∅).

Note: We can't use the �trick� with free factor because A is not necessarily a
free factor.

Proof: Notice thatA = 〈e1, e2, e3, [e4, e5], ..., [e2i+2, e2i+3]〉 look at the graph
of groups

We have

F2i+3 = (((A ∗[e2i+2,e2i+3] 〈e2i+2, e2i+3〉) ∗[e2i,e2i+1] 〈e2i, e2i+1〉)...) ∗[e4,e5] 〈e4, e5〉

If we have a JSJ decombosition with one of the vertices cointaining A, then
that vertice is acl(A). By the universal property we can collapse the JSJ to
get the above graph. In this graph A is a vertice, so it must be that A = acl(A)
proving the �rst point. for imaginaries,

if γ = [c]E1
: Write A0 = A, Al+1 = Al∗[e2(i−l)+2,e2(i−l)+3]〈e2(i−l)+2, e2(i−l)+3〉.

Suppose l ≤ i is the minimal s.t. [c]E1
∩Al 6= ∅. Asumme by contadiction l > 0,

WLOG just assume l = i. We can assume (up to conjugation) that c is in
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cyclically reduced form with respect to Ai−1 ∗[e4,e5] 〈e4, e5〉, c = c1 · ... · cm.
By the minimality assumption ci /∈ Ai−1 = 〈e1, e2, e3, [e4, e5], e6, ..., e2i+3〉. for
some j ≤ m cj /∈ Ai−1.s

To get a contradiction, we would like to show that [c]E1
has in�nitley many

orbits under AutA(F2i+3) , i.e. the orbit of c has in�nitley many conjugacey
classes. we would have liked to use dehn twists, but the orbit under dehn
twists may have only �nitely many conj classes. So we use a more complicated
homeomorphism of the surface, a pseudo-Anosov homeomorphism h. h can
be extended to an automorphism of F2i+3 by preserving Ai−1, in praticular
preserving A. We have {[hk(c)]E1

|k < ω} is �nite. .there is an in�nite I ⊂ ω
s.t. c and hk(c) are conjugates for any k ∈ I.

• If m = 1, then c = c1 ∈ 〈e4, e5〉\〈[e4, e5]〉 〈e4, e5〉 is a free factor so for
every k ∈ I c and hk(c) must be conjugates in 〈e4, e5〉, in contadiction to
one of the properties of pseudo-Anosov (if I ⊂ ω is in�nite, {hk(c)|k ∈ I}
has in�nite conjugation classes)

• If m > 1, then ∀k ∈ I hk(c) = hk(c1) · ... · hk(cm) is conjugate to
c1 · ... · cm, which is in cyclicly reduced form, so hk(c) is obtained from c
by a cyclic permutation and then conjugation from the boundary, hk(c) =
b−1k cpk(1)...cpk(m)bk for pk a cyc permutation and b ∈ 〈[e4, e5]〉. this con-
tradicts another property of pseudo-Anosov.

For the other basic eq classes the proof goes in similar ways.
Remark: Lemma 1 aplies also to acleq(e1, e2, a0, ..., ai−1, ai).
Lemma 2: Suppose γ ∈ acleq(e1, e2, a0, ..., ai−1, ai+1);

• if γ is real γ ∈ 〈e1, e2, a0, ..., ai−1, ai+1〉 =: A

• if γ = [c]E for a basic E then ∃d ∈ A s.t. γ = [d]E .

Pf Lemma 2: The proof goes the same, except we need to look at the graphs
of groups
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Pf Prop 4: DenoteA = 〈e1, e2, a0, ..., ai−1, ai〉 = 〈e1, e2, e3, [e4, e5], ..., [e2i+2, e2i+3]〉
B = 〈e1, e2, a0, ..., ai−1, ai+1〉 = 〈e1, e2, e3, [e4, e5], ..., [e2i, e2i+1], [e2i+2, e2i+3][e2i+4, e2i+5]〉
Suppose γ ∈ acleq(A) ∩ acleq(B). If γ is real, γ ∈ A ∩ B. γ ∈ F2i+5 =

〈e1, e2, .., e2i+1〉 ∗ 〈e2i+2, .., e2i+5〉, we can write γ in a normal form with respect
to this splitting γ = c1b1...cmbm. cj ∈ 〈e1, e2, .., e2i+1〉, bj ∈ 〈e2i+2, .., e2i+5〉. Be-
cause γ ∈ A∩B we have bj ∈ 〈[e2i+2, e2i+3]〉∩〈[e2i+2, e2i+3][e2i+4, e2i+5]〉 , so the
bj must be trivial and γ ∈ 〈e1, e2, .., e2i+1〉∩A∩B ⊂ 〈e1, e2, e3, [e4, e5], ..., [e2i, e2i+1]〉
as needed.

If γ is a E1 equivalence class, by lemma 1+2 we can write γ = [c]E1
= [d]E1

for c ∈ A, d ∈ B. We can assume that c, d are in cyc reduced form w.r.t the split-
ting 〈e1, e2, .., e2i+1〉∗〈e2i+2, .., e2i+5〉 c and dmust be cyclic permutations of each
other, so like before they must both live in 〈e1, e2, .., e2i+1〉, thus they must both
live in 〈e1, e2, e3, [e4, e5], ..., [e2i, e2i+1]〉 so γ ∈ acleq(e1, e2, e3, [e4, e5], ..., [e2i, e2i+1])

similarly if γ is a Em
2 equivalence class, by lemma 1+2 we can write γ =

[c1, c2]E = [d1, d2] for c1, c2 ∈ A, d1, d2 ∈ B. if c2 = d2 = 1 it is obvious,
else C(c2) = C(d2) = 〈b〉, and c−11 d1 ∈ 〈bm〉. It must be that b ∈ A ∩ B =
〈e1, e2, e3, [e4, e5], ..., [e2i, e2i+1]〉 so d1, d2 ∈ 〈e1, e2, e3, [e4, e5], ..., [e2i, e2i+1]〉 as
needed.
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