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Preliminaries

The proof of the homogeneity of the free group consists mainly of construcing a formula ψg(x)

stating that there exists an automorphism of the free group mapping g to x; in other words, that

g and x lie in the same orbit under the action of the automorphism group. We show (in a slightly

more general setting) that this formula indeed de�nes the orbit of g, and use the fact that such

orbits are de�nable in order to give an explicit description of the algebraic closure of a subset of

the free group. Finally, this description of algebraic closures in the free group will help us conclude

the following: every elementary subgroup of the free group is a free factor.

We begin by reminding a few previous results and stating a few facts to be used throughout this

document. We denote by F a non-abelian free group and by AutA(F) the group of automorphisms

of F �xing the subset A ⊂ F. Unless stated otherwise, we assume that F is freely indecomposable

relative to A and denote by Λ a JSJ decomposition of F relative to A.

Theorem 0.1. Suppose that 〈A〉 is non-abelian. Then one can assume that Λ satis�es the following

properties:

1. The graph of groups underlying Λ is �nite, and every vertex group in this graph is �nitely

generated.

2. A is contained in a unique rigid vertex group HA, that is HA is not of surface-type.

3. Every edge group is maximal abelian in its endpoints' vertex groups.

Remark 0.2. We can assume that property 1. above holds also in the case where 〈A〉 is abelian.

Theorem 0.3. The group of modular automorphisms of F �xing A, ModA(F), has �nite index

in AutA(F). Furthermore, if φ ∈ ModA(F) then φ restricts to conjugation on non-abelian rigid

vertices of Λ and maps surface-type vertex groups isomorphically onto conjugates of themselves.

De�nition 0.4. We say that two homomorphisms φ, ϕ : F −→ F are Λ− related if the following

holds:

1. For each rigid vertex group H of Λ there exists uH ∈ F such that φ|H = Conj(uH) ◦ ϕ|H .

2. For every surface-type vertex group S of Λ, if φ(S) is non-abelian then ϕ(S) is non-abelian.

Remark 0.5. By theorem 0.3, if φ = σ ◦ϕ for σ ∈ ModA(F) then φ and ϕ are Λ−related. Further-
more, if a homomorphism h : F −→ F is Λ−related to the identity then h is an automorphism.
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Theorem 0.6. Fix a homomorphism hA : 〈A〉 −→ F. Then there exist �nitely many proper

quotients of F, {ηi : F −→ Qi}i≤n, such that for any non-injective homomorphism h : F −→ F
extending hA there exists a modular automorphism σ ∈ ModA(F) such that h ◦ σ factors via ηi for

some i ≤ n.

We conclude by mentioning another theorem of a model-theoretic character, opposed to the

algebraic theorems appearing above:

Theorem 0.7. If G is a free factor of F then G is an elementary subgroup of F.

1 De�nability of Orbits in the Free Group

Theorem 1.1. Suppose A ⊂ F is not contained in any proper free factor of F and let ḡ be a tuple

in F. Then the orbit of ḡ under AutA(F) is de�nable (over A).

Proof. Recall that Λ denotes a JSJ decomposition of F relative to A and �x qi ∈ Qi whereQ1, ..., Qn

are as in theorem 0.6 above (taking hA to be the inclusion map). We aim to formulate the state-

ment �there exists a homomorphism h : F −→ F �xing A such that h(ḡ) = x̄, and for every h′

which is Λ−related to h, h′(qi) is nontrivial for every i ≤ n�.

Note that if this statement holds for some ḡ′ then by theorem 0.6 there exists an injective

h : F −→ F mapping ḡ to ḡ′ and �xing A; by the relative co-Hopf property, h is an automorphism,

which implies that ḡ′ lies in the orbit of ḡ under AutA(F). On the other hand, suppose that ḡ′ lies

in the orbit of ḡ under AutA(F) so ḡ′ = h(ḡ) for some automorphism h of F which �xes A. If h′

is any homomorphism which is Λ−related to h then h′ ◦ h−1 is Λ−related to the identity, and by

remark 0.5 h′ ◦ h−1 is an automorphism. Hence h′ is an automorphism so h′(qi) is nontrivial for

every i ≤ n and the statement holds for ḡ′. Thus, if ψḡ(x) is a formulation of the statement above

then ψḡ(F) is exactly the orbit of ḡ under AutA(F).

Fix a generating set s̄ = (s1, ..., sn) for F and write gi = wi(s̄) where ḡ = (g1, ..., gk). We divide

the construction of the formula ψḡ(x) into three parts:

1. A formula Ψ(t1, ..., tn, x̄) stating that the homomorphism de�ned via si 7→ ti maps ḡ to x̄

and �xes A. For every a ∈ A �x a word wa such that wa(s̄) = a; consider the system of

equations

ΣA(s̄, t̄) =
{
wa(s̄) (wa(t̄))

−1
= 1 : a ∈ A

}
(where s̄ and t̄ are tuples of variables). Since free groups are equationally noetherian, ΣA(s̄, t̄)

is equivalent to a �nite subsystem consisted of equations corresponding to some elements

a1, ..., am ∈ A. This enables us to write

Ψ(t̄, x̄) =

(
k∧
i=1

wi(t̄) = xi

)
∧

(
m∧
i=1

wai(t̄) = ai

)

2. A formula Φ(t1, ..., tn, r1, ..., rn) stating that the homomorphism ht de�ned via si 7→ ti is

Λ−related to the homomorphism hr de�ned via si 7→ ri. Suppose that the rigid vertices of
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Λ are v1, ..., vr and that the surface-type vertices of Λ are u1, ..., us; denote by Hv the vertex

group of the vertex v ∈ V (Λ). Using theorem 0.1, �x a �nite generating set āv for Hv and

write āv = w̄v(s̄) for every v ∈ V (Λ). Recall that ht and hr are Λ−related if and only if the

following is true: for every i ≤ r there exists zi ∈ F such that ht|Hvi
= Conj(zi) ◦ hr|Hvi

,

and for every i ≤ s if ht(Hui) is non-abelian then so is hr(Hui). Denote by α(x̄) the formula

stating that every two elements taken from the tuple x̄ commute (�x such formula for every

arity); hence α(x̄) holds if and only if the tuple x̄ generates an abelian group. Therefore one

can write

Φ(t̄, r̄) =

(
∃z1 · · · ∃zr

r∧
i=1

(
w̄vi(t̄) = zi (w̄vi(r̄)) z−1

i

))
∧

(
s∧
i=1

(¬α(w̄ui(t̄)) −→ ¬α(w̄ui(r̄)))

)

3. A formula Υ(r1, ..., rn) stating that the homomorphism de�ned via si 7→ ri does not kill

q1, ..., qn. The construction of such a formula is rather simple: write qi = wqi(s̄) and set

Υ(r̄) =

(
n∧
i=1

wqi(r̄) 6= 1

)

At last, the three formulae above give us the desired formula:

ψg(x̄) = ∃t̄ (Ψ(t̄, x̄) ∧ ∀r̄ (Φ(t̄, r̄) −→ Υ(r̄)))

2 A Description of Algebraic Closures

The goal of this section is to describe the algebraic closure of a subset A of F, in the case where

the group generated by A is non-abelian. Recall that the algebraic closure of A in F, denoted by

acl(A), concludes of all elements g ∈ F which are contained in a �nite set which is de�nable over

A. We remark that in the case where 〈A〉 is abelian (and hence cyclic), a slight modi�cation of

the arguments presented in this section can be used to derive the following result:

Theorem 2.1. If A ⊂ F generates an abelian group then acl(A) is the envelope of 〈A〉, that is

acl(A) = {g ∈ F : ∃n gn ∈ 〈A〉}

In the case where A contains non-commuting elements, we have the following:

Theorem 2.2. Suppose A ⊂ F generates a non-abelian group. Denote by FA the smallest free

factor of F containing A and let Λ be a JSJ decomposition of FA relative to A. Then acl(A) is the

vertex group of Λ containing A.

Remark 2.3. Bring to mind that theorem 0.1 implies that there exists a unique vertex group in Λ

containing A.

Before getting hands on with the proof, observe the following: if the orbit of an element g ∈ F
is in�nite, then g /∈ acl(A). This follows from the fact that any element g′ in the orbit of g shares

the same type as g (over A), and thus the orbit of g is contained in every de�nable set X ⊂ F
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containing g. Therefore, our strategy of choice will be to show that whenever g is not in the vertex

group of Λ containing A then the orbit of g under AutA(F) is in�nite, hence g /∈ acl(A). Denote

this vertex group by HA, and the two lemmas to follow will imply that acl(A) ⊂ HA.

Lemma 2.4. If g /∈ FA then its orbit under AutA(F) is in�nite.

Proof. Write F = FA ∗H and g = f1h1 · · · fnhn where fi ∈ FA and hi ∈ H. Since g /∈ FA, at least
one nontrivial hi appears in this product. Since FA is a non-abelian free group, there exists u ∈ FA
which does not commute with any (nontrivial) fi. Let τn ∈ AutA(F) be given by the identity on

FA and conjugation by un on H (τ is indeed an automorphism since the homomorphism de�ned

by the identity on FA and conjugation by u−n on H is its inverse).

It is enough to show that τn(g) 6= τm(g) for every n 6= m. And indeed, note that

τn(g) = (f1u
n)h1

(
u−nf2u

n
)
· · ·
(
u−nfru

n
)
hr
(
u−n

)
and by the uniqueness of the normal form of an element in the free product, since un 6= um one

has that τn(g) 6= τm(g). Clearly any τn can be extended to an automorphism of F �xing A which

completes the proof.

Lemma 2.5. If g ∈ FA is not contained in HA then its orbit under AutA(F) is in�nite.

Proof. Recall that by theorem 0.1 we may assume that each edge group is maximal abelian in its

endpoints vertex groups. Fix a maximal subtree T of Λ, and denote by Λg the minimal subgraph

of Λ such that g is contained in π1(Λg) (computed with respect to the maximal subtree T ∩Λg). If

Λg contains some edge e with corresponding edge group 〈c〉, collapse all edges of Λ but e to obtain

a splitting of FA. Distinguish between the two following cases:

1. The splitting obtained is an HNN extension U∗t with HA ≤ U and g /∈ U .

Consider the Dehn twist τcn which is the identity on U and maps t to tcn. Since τcn can be

extended to an automorphism of F �xing A it is enough to show that τcn(g) 6= τcm(g) for

every n 6= m; this comes down to a standard calculation with normal forms.

Denote the two images of 〈c〉 in HA by C1 and C2, identify c with its image in C1 and denote

by c̄ the image of c in C2; since g /∈ U and C1, C2 are maximal abelian in HA, g can be

written in normal form g = g0t
ε1g1 · · · tεkgk where k > 0, if εi = 1 and εi+1 = −1 then

gi /∈ C1 (and thus gi does not commute with c) and if εi = −1 and εi+1 = 1 then gi /∈ C2

(and in this case, gi does not commute with c̄). Striving for a contradiction, assume that

τcn(g) (τcm(g))
−1

= 1 for some n 6= m. Note that if ` is the maximal index for which g` is

nontrivial, then ε`+1, ..., εk are all equal. Assume without loss of generality that ε`+1 = −1

(and thus ε`=1) and note that (in the case where ε`+1 = 1 the proof is carried out in a similar

manner using the fact that tc = c̄t)

1 = τcn(g) (τcm(g))
−1

=
(
g0t

ε1cε1·ng1 · · · g`−1 (c̄)
ε`·n) tε`g`cε·(n−m) (g`)

−1
t−ε`

(
(c̄)
−ε`·m · · · g−1

0

)
where ε = ε`+1 + · · · + εk 6= 0. By Britton's lemma, since the word above is equal to the

trivial element, g`c
ε·(n−m) (g`)

−1
is contained in C1 (recall we assume that ε` = 1). Since g`
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and c do not commute, cn−m must be trivial, a contradiction. Hence, since each τcn can be

extended to an automorphism of F �xing A, the orbit of g under AutA(F) is in�nite.

2. The splitting obtained is an amalgamated product U ∗〈c〉 V with HA ≤ U and g /∈ U .

Again, consider the Dehn twist τcn which is the identity on U and conjugation by cn on

V . In this case, similar to the previous one, we claim that τcn(g) 6= τcm(g) for every n 6= m.

As before, this comes down to a calculation with normal forms which we present brie�y: since

g /∈ U , one can write g = zu1v1 · · ·ukvk where z ∈ 〈c〉, at least one vi is nontrivial, each ui is
taken from a �xed set of coset representatives of 〈c〉 in U and each vi is taken from a �xed

set of coset representatives of 〈c〉 in V . Suppose by contradiction that τcn(g) (τcm(g))
−1

= 1,

and reduce this product to its normal form; this normal form must coincide with the trivial

element by uniqueness. During this process, one obtains that v`, where ` is the maximal

index for which v` is nontrivial, must commute with cn−m. Since 〈c〉 is maximal abelian in

the vertex groups of the endpoints of e, v` must lie in 〈c〉, a contradiction. It follows that

the orbit of g under AutA(F) is in�nite.

It is left to verify that the orbit of g under AutA(F) is in�nite also in the case where Λg does not

contain an edge, that is when there is some vertex group H containing g. Note that FA is obtained

from π1(T ) by taking �nitely many HNN extensions, and thus each automorphism of π1(T ) can

be extended to an automorphism of FA (which can be extended to an automorphism of F). Thus

it su�ces to �nd in�nitely many automorphisms of π1(T ) which map g to distinct elements.

Consider the unique path connecting HA to H in T , and let e an edge appearing along this

path. Then again, collapsing all edges of Λ but e, one obtains a splitting of FA as an amalgamated

product U ∗〈c〉 V with HA ≤ U and g /∈ U . Thus by applying the process described in case 2.

above, the fact that the orbit of g under AutA(F) is in�nite follows.

Proof. (of theorem 2.2). With these two lemmas in hand, as observed earlier we obtain that

acl(A) ⊂ HA. Before showing the inclusion in the other direction, we point out that by theorem

0.3 any automorphism φ ∈ ModA(FA) restricts to conjugation by some u on HA; since φ also �xes

the non-abelian group 〈A〉, u must commute with every a ∈ A which can only happen in the case

where u = 1. Thus any modular automorphism of FA �xing A must �x the entire vertex group HA.

Let g ∈ HA and as a consequence of the observation stated above the orbit of g under ModA(FA)

is simply {g}. By theorem 0.3, [AutA(FA) : ModA(FA)] < ∞ which implies that the orbit of g

under AutA(FA) is �nite. Theorem 1.1 tells us that this orbit is a de�nable set (over A) in FA,

and thus g ∈ aclFA(A) (where aclFA(A) denotes the algebraic closure of A in the group FA). To

�nish, recall that FA is a free factor of F so by theorem 0.7 FA ≺ F. Hence aclFA(A) = acl(A)

which �nishes the proof.

3 Elementary Subgroups of the Free Group

Composing the two results established in the previous sections, one can obtain the converse to

theorem 0.7. This gives a complete correspondence between elementary subgroups of F and free
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factors of F.

Theorem 3.1. If H is an elementary subgroup of F then H is a free factor.

Proof. Let F be the smallest free factor containing H. Since H ⊂ F , H � F and F � F, H is an

elementary subgroup of F . Assume to derive a contradiction that H 6= F , and let Λ be the JSJ

decomposition of F relative to H. Consider the following cases:

1. Λ is nontrivial. Thus Λ contains a vertex whose corresponding group H ′ does not contain

H. Let g ∈ H ′ and by lemma 2.5 its orbit under AutH(F ) is in�nite; the proof of theorem

2.2 implies that the orbit of g does not meet H. By theorem 1.1 there exists a formula

ψg(x) (with parameters from H) de�ning the orbit of g in F under AutH(F ). Note that

F |= ∃xψg(x) and hence the same must hold in H. This yields an element h ∈ H such that

H |= ψg(h). Since H � F it follows that F |= ψg(h), contradicting the fact that the orbit of

g does not meet H.

2. Λ is trivial, that is Λ contains the unique vertex (with corresponding group) F . Let g ∈ F\H
and by theorem 2.2 its orbit under AutH(F ) is a �nite set, say of size n. Let ψg(x) be a

formula (with parameters from H) de�ning this orbit. De�ne

Ψ = ∃x1 · · · ∃xn

 ∧
i,j≤n

xi 6= xj

 ∧ ( n∧
i=1

ψg(xi)

)
∧

(
∀y

(
n∧
i=1

y 6= xi

)
−→ ¬ψg(y)

)

that is Ψ is a sentence (over H) stating that there are exactly n elements in the set O de�ned

by ψg(x). Since H � F , the set de�ned by ψg(x) in H is O∩H. Furthermore, H |= Ψ which

implies that O ∩H contains as many elements as O, that is O ∩H = O. This contradicts

the fact that g ∈ O\H.
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