SOME LOWER BOUNDS ON SHELAH RANK IN THE FREE GROUP - LECTURE NOTES

We will give equivalent defenition of foking, with notion of definable sets.

Lemma. (Alternative Defenition Of Forking) A formula ϕ forks over A iff there is a sequense $\{\sigma_n\} \subset Aut_A(\mathbb{M})$ and an integer $k < \omega$ such that $\sigma_n(X)$ (where X is the set defined by ϕ) is k-wise disjoint. Thus we can say thay "The defineable set forks over A" instead talking about the formula defining X.

There is an importent lemma for evaluating Shelah Rank

Lemma. Let \mathbb{M} be a model with a fixed parameter subset A. Suppose that $X \subset M^d$ is definable (not necessarily over A only). If There exist a subset Y of X, definable over \mathbb{M} , an integer k, and a sequence $\sigma_n \in Aut_A(\mathbb{M})$ such that the translates $\sigma_n(Y)$ are k-wise disjoint, and the σ_n preserve X set-wise, then

$$R_A^{\infty}\left(X\right) \ge R_A^{\infty}\left(Y\right) + 1$$

[Talk about graph of proups, floor and structures]

Let T be a tower structure with one floor of the graph of groups Γ

Figure 0.1. *

We want to show that

$$R^{\infty}_{\mathbb{F}(a,b)}\left(V^{T}\right) \geq \omega$$

Recall that

$$T = \left\langle a, b, u, v \mid \overbrace{[a, b] = [u, v]}^{\Sigma_T} \right\rangle$$

Fact. T is a model of the theory of the free groups, and it's an elementery extention of $\mathbb{F}(a,b)$.

So we may look at V^T as $V^T = \{(x, y) \in T^2 \mid [a, b] = [x, y]\}$ In order to see that $R^{\infty}_{\mathbb{F}(a,b)}(V^T) > \omega$ we will show that for every $n < \omega$ there is X_n such that $R^{\infty}_{\mathbb{F}(a,b)}(X_n) \ge n$, and we will get that

$$R^{\infty}_{\mathbb{F}(a,b)}\left(V^{T}\right) \ge R^{\infty}_{\mathbb{F}(a,b)}\left(X_{n}\right) \ge n$$

for every n so

$$R^{\infty}_{\mathbb{F}(a,b)}\left(V^{T}\right) \geq \omega$$

In order to see it we will construct, for every $n < \omega$ a set X_n where $R^{\infty}_{\mathbb{F}(a,b)}(X_n) \geq$ n.

Definition. Define $\tau_a, \tau_b \in \operatorname{Aut}_{\mathbb{F}(a,b)}(T)$ by

$$\tau_{u} = \begin{array}{cc} a \mapsto a \\ b \mapsto b \\ u \mapsto u \\ v \mapsto vu \end{array}, \tau_{v} = \begin{array}{cc} a \mapsto a \\ b \mapsto b \\ u \mapsto uv \\ u \mapsto uv \\ v \mapsto vv \end{array}$$

Fact. τ_u^2 and τ_v^2 form a base for a free sup-group of $Aut_{\mathbb{F}(a,b)}(T)$ of rank 2.

Prooving that
$$R^{\infty}_{\mathbb{F}(a,b)}\left(V^{T}\right) \geq \omega$$

Define

- For n = 0 $X_0 = \emptyset$, of course $R^{\infty}_{\mathbb{F}(a,b)}(X_0) \ge 0$.
- For n = 1 we define $X_1 = \{(u, v)\}$. If we take $\sigma_n = I_T$ we get $\sigma_n(X_0) = \emptyset$ are disjoint (they are empty), and $\sigma_n(X_1) = X_1$ so $R^{\infty}_{\mathbb{F}(a,b)}(X_1) \ge R^{\infty}_{\mathbb{F}(a,b)}(X_0) + 1 > 1$
- $\begin{array}{l} R^{\infty}_{\mathbb{F}(a,b)}\left(X_{0}\right)+1\geq1\\ \bullet \mbox{ For }n=2 \mbox{ we define} \end{array}$

$$X_2 = \left\{ \left(u, uv^{2k} \right) \mid k \in \mathbb{Z} \right\}$$

 X_2 is definable by the formula

$$\varphi(x, y) \sim x = u \land \exists z ([z, u] = 1 \land y = uz^2)$$

For every $k \in \mathbb{Z} \tau_u^{2k}(X_1) = \{(u, vu^{2k})\}$ and they form a disjoint sequence $\{\tau_a^{2k}(X_1)\}$ and τ_a^{2k} preserve X_2 set-wise, so

$$R^{\infty}_{\mathbb{F}(a,b)}\left(X_{2}\right) \geq R^{\infty}_{\mathbb{F}(a,b)}\left(X_{1}\right) + 1 \geq 2$$

• For n = 3 we notice that $X_2 = \langle \tau_u^2 \rangle \cdot (u, v)$ and we define

$$X_{3} = \langle \tau_{u}^{2} \rangle \cdot \tau_{v}^{2} \cdot \langle \tau_{u}^{2} \rangle \cdot X_{1} = \langle \tau_{u}^{2} \rangle \cdot \left(\tau_{v}^{2} \left[X_{2} \right] \right) =$$
$$= \bigcup_{k \in \mathbb{Z}} \bigcup_{m \in \mathbb{Z}} \left\{ \tau_{u}^{2k} \tau_{v}^{2} \tau_{u}^{2m} \left(u, v \right) \right\}$$

If this union is not disjoint we get that there is $k_1m_1k_2, m_2$ such that

$$\tau_{u}^{2k_{1}}\tau_{v}^{2}\tau_{u}^{2m_{1}}\left(u,v\right) = \tau_{u}^{2k_{2}}\tau_{v}^{2}\tau_{u}^{2m_{2}}\left(u,v\right)$$

this means that $\tau_u^{2k_1}\tau_v^2\tau_u^{2m_1}$ and $\tau_u^{2k_2}\tau_v^2\tau_u^{2m_2}$ identify on u and v, and so on a and b, so they identify on the generators so they identical. $\langle \tau_u^2, \tau_v^2 \rangle$ is free group so $k_1 = k_2, m_1 = m_2$ and X_3 is disjoint union. Furthermore $\tau_u^{2k}(X_3) = X_3$ so

$$R^{\infty}_{\mathbb{F}(a,b)}\left(X_3\right) \ge R^{\infty}_{\mathbb{F}(a,b)}\left(X_2\right) + 1 \ge 3$$

• For each n, after we defined X_n we define

$$\begin{split} X_{n+1} &= \left\langle \tau_u^2 \right\rangle \cdot \tau_v^2 \left(X_n \right) = \\ &= \left\{ w \left(\tau_u^2, \tau_v^2 \right) \left(u, v \right) \mid w \text{ is a word in } x, y \text{ that starts and ends with } x \text{ and has no powers of } y \text{ and has } y n \\ &= \bigcup_{k \in \mathbb{Z}} \tau_u^{2k} \circ \tau_v^2 \left(X_n \right) \end{split}$$

If this union is not disjoint then there are two words that start with some power of τ_u^2 and agree on the generators of T, so this they that same so the first power of τ_u^2 is the same, so they are in the same set int the union. X_{n+1} is preserved by τ_u^{2k} $(k \in \mathbb{Z})$. This means that $R^{\infty}_{\mathbb{F}(a,b)}(X_{n+1}) \geq R^{\infty}_{\mathbb{F}(a,b)}(X_n) + 1 \geq n+1$.

For Toruos With Genuse Bigger then 1

We will give general idea about the prove for the case of the two hole toruse, and hopefully the reader will see understand the general idea for some genuse.

A theorem that will be with out proof will help us to do the same trick as before.

Theorem. If $\Sigma_0 \subset \Sigma_1$ are surfaces with boundaries where $\pi_1(\Sigma_0)$ is proper subgroup of $\pi_1(\Sigma_1)$ then there is a $\varphi \in Aut(\Sigma_1)$ such that

$$\langle Aut(\Sigma_0), \varphi \rangle = Aut(\Sigma_0) * \langle \varphi \rangle$$

If we divide the double toruse to three surfaces like so

In this case we get

$$V^{T} = \left\{ (\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}) \in T^{3} \mid \Sigma_{T} () \right\}$$

Where Σ_T () are the relation defining T.

$$Y_{1} = \{(y_{1}, z_{1}, \bar{x}_{2}, \bar{x}_{3}) \mid \Sigma_{T}(), [y_{1}, z_{1}] = [u_{1}, v_{1}]\}$$

 $Y_{2} = \{(y_{1}, z_{1}, q_{2}, p_{2}, \bar{x}_{3}) \mid \Sigma_{T}(), [y_{1}, z_{1}] = [u_{1}, v_{1}], q_{2}p_{2} = [y_{1}, z_{1}]\}$

SOME LOWER BOUNDS ON SHELAH RANK IN THE FREE GROUP - LECTURE NOTES 5

We can think about the groups like subgorups $\operatorname{Aut}_{\partial \Sigma_0}(\Sigma_0) \leq \operatorname{Aut}_{\partial \Sigma_1}(\Sigma_1) \leq \operatorname{Aut}_{\mathbb{F}(a,b)}(T)$