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1 Intro and Motivation

1.1 Outline

In this talk I will prove that the theory of F is non-equational. The talk is based on an article by Isabel
Miiller and Rizos Sklinos, building on previous work of Sela. (https://arxiv.org/abs/1703.04169)
The talk will consists of:

1. Definitions, motivation and combinatorial tools
2. Proof F is non-equational

3. (If time permits)
Proof Gy x Gy (excluding Zs * Zs) is non-equational, using Bass-Serre Theory.

Note: Most of what’s written down was not in the talk itself, but I tried to prove as much of the
nontrivial and semi-trivial statements as I could. Some of these are my own proofs so there may be some
inaccuracies.

1.2 Definitions

Definition 1.1. Let T be a first order theory. A formula ¢ (z,y) is called an equation in = (x is a
variable, y is a parameter, both are tuples) if any collection of instances ¢ (z,b) is equivalent to a finite
sub-collection in T". That is, for any (b;),.; we have a finite Iy C I s.t.:

ﬂ‘ﬁ($7bi) = ﬂ (p(x7bi)
icl icly

Equivalently,

Claim 1.2. ¢ (z,y) is an equation in z iff the family of intersections of instances ¢ (x,b) has the DCC.

Proof. (Same proof as for “Module is Noetherian iff sub-modules are finitely generated”)

(=) If we have an ascending chain I; C I, C --- of indexing sets that induces a descending chain:
i€l i€ly

Then if we take I = J,, oy I we have (;c; ¢ (2, ;) = (;cy, ¢ (2, ;) for a finite subset Iy of I and so
there must be some I,,, for which Iy C I,,,. So for any n > ng, Iy C I,,, C I,, and:

ﬂ Qo(vai) 2 m@(x’bi) = ﬂ Qo(vai) 2 m @(vai)
i€l, iel i€ly i€ly,

therefore (), 2,b;) =(,c; ¢ (x,b;) and the chain is stable from ny.
iel, ¥ icl
<) If we have the DCC and there is an indexing set I for which we take (.., ¢ (x, b;), then take the
g iel

family
Q= {ﬂ @ (x,b;) |J C Iis ﬁnite}
ieJ


https://arxiv.org/abs/1703.04169

It is nonempty since |M| = (,c, ¢ (,b;) €  and any descending chain has a lower bound in this set. (A
descending chain ([, ¢ («,b;)) is stable hence there is some ng s.t. the chain equals ﬂieJno o (z,b;) €
from ng and this is its lower bound). Therefore (Zorn) it has a minimal element (;c; ¢ (z,b;). Now, it

is always true that:
m @(zvbi) 2 ﬂ @(x’b’i)
i€l el
Since Iy C I so if these are not equal there exists j € I \ Iy such that:
Ne@b)2 [ e@bh)2()elb)
i€l ielou{j} il

So Ip U {j} € Q contradicts the minimality of . Hence there is an equality. O

Remark 1.3. Equationality is a generalization of Noetherianity of Modules and Rings. Collections of b;
are the restricting conditions (Such as generators of ideals in a ring) and they have an ACC on their
closure. ), ¢ (z, ;) are the underlying sets (algebraic/closed sets of the Zariski topology) and they admit
a DCC (Noetherian topological space). Moreover, a ring is Noetherian iff every ideal is finitely generated,
corresponding to our first definition.

Definition 1.4. A theory T is n-equational if every formula ¢ (z,y) where |z| = n (z is an n-tuple) is a
Boolean combination of equations.

Definition 1.5. T is equational if it is n-equational for all n € N.
Example 1.6. Some examples of equations:

1. x=y

2. For any definable equivalence relation ~, x ~ y is an equation.

3. z # y is not an equation (for an infinite model)
—So for an equation ¢; = is not necessarily an equation.

4. In algebraically closed fields ¢ (x,y) = >, fa (y) x* = 0 is an equation.
—Precisely because k [z] is a Noetherian ring (Hilbert’s Basissatz)

1.3 Some properties of equations
Remark 1.7. ¢ (x,y) is not an equation iff there exists an infinite sequence {c, }, .y and the following is
a properly decreasing chain:

¢ (x,00) 2 (@, c0) N (wen) 22 () pla,er) 2

k<n

Proof. (<) Immediate from the DCC.
(=) If ¢ (x,y) is not an equation, then there is a set I such that (,.; ¢ (x,b;) but for every finite

subset J C I it holds that:
(Vo (2,0:) 2 () ¢ (2,b)
iel ieJ

We can then choose {b;, },, oy and indexing sets I,, = {iy},_, such that:

i€l i€l 1el,
90($7bi0) 2 (p($7bio) m@(mvbh) 2 2 ﬂ (p(vaik) 2
k<n
Since all I,, are indeed finite. Set ¢, = b;, and we are done. O



Fact 1.8. If for arbitrarily large n there exists a sequence {b;}

i<n Such that the following is a decreasing
sequence:

@ (2,b0) 2 ¢ (z,b0) Nep (,b1) 2+ 2 () ¢ (@, b:)

i<n
Then there exists an infinite properly decreasing sequence:

p(x,c0) 2 (@ c0)Np(z,e) 2--2 () wlwe) 2

The proof of this fact uses a compactness argument (which we didn’t discuss in the seminar) on
formulas of the type:

n i—1

N Ge) (e @u) A |~ N\ ¢y

i=1 §=0

One can also follow the proof of the stronger argument in the proof of Proposition 2.11 here:
https://www.math.uwaterloo.ca/~rmoosa /ohara.pdf

Remark 1.9. For ¢ (z;y), ¢°? (z;y) == ¢ (y; x) is an equation (w.r.t. y).

Proof. Suffices to show one direction from symmetry. Assume ¢ (z,y) is not an equation in y. Then from
remark [1.7 We can then choose {a,},, oy such that:

¢ (a0,y) 2 ¢ (a0, y) N (ar,y) 22 [ ¢ (ak,y) 2
Then there exist for each j € N;

bj € ()¢ (a,y)~ @laj,y) =
i<j
whence F ¢ (a;,b;) for i < j but # ¢ (a;, b;).
This condition precisely means that for each n:

Qo(van) 2 @(xabn)m@(xabn—l) 2

HU
D)
©
®
=

And by compactness there exists a sequence {cg },c:
¢ (,00) 2 ¢ (00) N (01) 27+ 2 ﬂ p(z,cp) 2

Contradicting ¢ being an equation in x.
Lemma 1.10. Finite conjunctions and disjunctions of equations are equations:

Proof. Suffices to show for two equations. Assume ¢ (z,y), @2 (x,y) are equations. Then take the
formulas: for some indexing sets I there exist I, I such that:

(1 (@:b:) = [ @1 (2, b:)

icl i€l
(Ve (@,00) = () 2 (a,b)
icl i€l

And we have:


https://www.math.uwaterloo.ca/~rmoosa/ohara.pdf

ﬂ(wl(wvb)\/wsz (ﬂ@l (x,b;) >U<m@2($,bi)>=

el iel el

= (ﬂ ¥1 (vai)> U (m P2 (mvbi)> =

( ﬂ 1 (x,b¢)> U < ﬂ ¥2 (ffvbi)> =
i€l Ul i€huL
- ﬂ (p1 (m,b;) V @2 (x,b;))

i€l1Ul2

Noting that adding Is to I; does not restrict ﬂzeh 1 (z,b;) further since it already includes all the
conditions of o1 (z,b;) for ¢ € I and vice versa on @3 (x,b;). And similarly:

ﬂ(g@l(x,b)/\g@xb (ﬂg@l (x,b;) )ﬁ(ﬂ(pg(l‘,bi)>=

i€l el el
(ﬂ@l (2, b;) ﬂ(ﬂ@z(%@))Z
i€l icls

1611U12 thUIQ

= [ (o1 (@) Awa (e bi)

i€l Ul
Where since I, I are finite, their union is finite. O
Corollary 1.11. Finite conjunctions and disjunctions of co-equations are co-equations:
Proof. Again, suffices to show for two co-equations. Note that for ¢, equations,
@ (2, y) N (2,y) = = (e (2,9) VO (2,9)
—p (2,y) V1 (2,y) = = (o (2,9) A (2,9))

The rest follows from the lemma. O

1.4 Motivation

Question: Does 1-equational imply equational? No contradictions yet. Open problem. We will show F is
not 1-equational.

Motivation: Collect as many examples of non-equational theories. F is an example of a stable but
non-equational theory which is a surprising result.

2 Tools

We try to approach the concept of equationality in a combinatorial manner, starting with a combinatorial
criterion for some formula being an equation:

Lemma 2.1. ¢ (z,y) is not an equation iff and only if for arbitrarily large n € N there are n-tuples
(@), (b;) such that E ¢ (a;,b;) fori < j but ¥ ¢ (a;,b;).

Proof. We will show this criterion for ¢ (z,y) not being an equation in y. It not being an equation in
follows from remark
(<) If such tuples exist then

b € (V¥ (aiy)~ () e ai,y)

1<j 1<



And then:

¢ (a0,9) 2 (¢ (a0, y) N (a1,9)) 2 -+ 2 [] ¢ (ak,y)
k<n

And we have an arbitrarily long descending chain, hence there must be an infinite unstable descending
chain. So ¢ (z,y) is not an equation in y and therefore not an equation in z.

(=) Conversely, if ¢ (x,y) is not an equation in y then there exists an infinite series {a;} and an
infinite properly descending chain:

¢ (a0, y) 2 (¢ (a0,y) N (a1,9) 2+ 2 [ ] ¢ (ar,y)
k<n

So we can find b; € (), ¢ (ai,y) N~ Ni<; ¢ (a;,y) for all j € N. In particular if we fix n we can take
the tuples (a;),,, and (b;),,, and our criterion is satisfied. O

Fact 2.2. Any Boolean combination ¢ of atomic formulas (py) is equivalent to a formula in disjunctive
normal form (DNF)

b=V A v
n<m \j<tn
Where 1; j is some @k, ; or ~py,

Corollary 2.3. Assume ¢ (x,y) equivalent to Boolean combination of equations. Then ¢ (z,y) is equiv-
alent to a formula of the form:

¢($ay) = \/ (Qﬂ? (.’)37y) A ﬂ/g (.T,y))

n<m
For some equations 1,15 and m € N.

Proof. Write ¢ (z,y) in DNF. Inside each element of the disjunction, there is a finite conjunction of
equations and co-equations. Each such element is equivalent to a conjunction of an equation and a
co-equation therefore ¢ (x,y) is equivalent to ¢ (z,y). O

Lemma 2.4. If ¢ (z,y) is a formula then if for arbitrarily large n € N exzist n X n matrices

such that E ¢ (aij,be) iff ¢ # k or (i,7) = (k,1) then ¢ (z,y) is not equivalent to a formula of the
form 1 (x,y) A —bs (z,y) where 1 and V2 are equations.

Proof. Part 1: First we prove that for arbitrarily large n every row (in both matrices simultaneously)
witnesses that —p (z,y) is not equivalent to an equation.
Fix 9. Then we have (a;,;) and (b;,;) as n-tuples with:

(F ¢ (aiyj,big1)) = j=1
(F ~@ (aipj,bi1)) = j#1

Specifically if j < I, E = (a;yj,bio1). Therefore ¢ is not equivalent to an equation by Lemma

Part 2: Assume the contrary of the conclusion, i.e. that ¢ (x,y) = ¥ (x,y) A b2 (z,y) and reach a
contradiction.

Assuming this, we have that - (z,y) = 1 (z,y) V 2 (2, y).

If for some iy we have F 1 (a;,j,b;,,1) for all j, [ then for iy we have

4 (ai0j7 biUJ) Ane ¢2 (aioj7 biol)

For all j,1. Contradicting that 1, is an equation but by Part 1 of the proof the LHS satisfies the criterion
for not being an equation.



Part 3: Now from part 2, for any ¢ there exist some j;,[; with F =1 (a;j,,bi,). Set new n-tuples

(aij.) , (briy)

For i # k we have E ¢ (a;j,, by, ) (from the condition of the lemma). Remembering our original assumption
¢ (z,y) = Y1 (z,y) A—g (x,y), For i < k then we have F ¢ (aij,, bk, ) and hence F ¢4 (a;j,, bk, ) and also
¥ 91 (aij,, bi, ). Contradicting that v; is an equation again by the criterion of Lemma O

Proposition 2.5. Suppose ¢ (x,y) a formula, A,,By, arbitrarily large matrices s.t.
1. There is a type which is satisfied by any tuple (a;;,br) for i #k or (i,7) = (k,1)
2. The formula ¢ (z,y) is satisfied by (a;;,br) if and only if i # k or (i,7) = (k,1)
Then T is non-equational. (Specifically, it is not n-equational for |x| = n)

Proof. We will show that ¢ is not a Boolean combination of equations. Assume the contrary. Then by
Remark ¢ is equivalent to

QO(xvy): \/ ( in (xvy)/\ﬁ'(/én (.’E,y))

0<m<n

We have E ¢ (a11,b11). So there is some mg such that if we define

0(z,y) = (1" (2z,y) A 3™ (2,y))

Then
E 0 (ai1,b11) = (¥ (@11, b11) A 93" (a11, bi1))

Since tp (ai1,b11) = tp(aij,br) for i # k or (4,75) = (k,1) then we can deduce F 0 (a;j;, by;) for such
i, 4, k1.

If i = k but j # 1 then F = (a;;,br) . In particular F =6 (a;;, br)-

By Lemma [2.4] this means that 6 is not a conjunction of an equation and a negation of an equation.
Contradiction. O

3 Non-Equationality of F

3.1 Working in F,
Fact 3.1. (Sela) Non-abelian free groups share the same theory
This fact allows us to work in F,,. The motivation for it is so that we have a countable basis to create

arbitrarily large matrices that satisfy the condition of Proposition 2.5] with the correct formula and type.

3.2 Definitions and useful properties of F

Definition 3.2. (Reminder) An element of I is called primitive if it is part of some basis of F.

Fact 3.3. Let a be a primitive element of F. Suppose a belongs to a subgroup H of F, then a is a primitive
element of H.

Proof. Recall the Kurosh subgroup theorem:
Fact 3.4. (Kurosh subgroup theorem) If G = Ax B and H < G, then:

= |8 0]« e 0



(Note: ® is supposed to be a big asterisk * representing the free product but I had some technical
difficulties with it)

If a is a primitive element and a € S then let S be the rest of the basis to which it belongs. F = (a) *
F (S) and so:

H=(Hn{a)*| ® (Hﬂ(a)g)} * [ ® (HNF(S)Y)
(a)9:g€F F(S)9:g€F
Where (H N{a)) = (a) C H and the rest of the free product is some free group with some basis T so
{a} UT is a basis for H. O

Mn

Fact 3.5. Letey,...,e, be a basis of the free group Fy, of rank n. Then e*'-e5? - - - e is not a primitive

element if for all i, m; # +1
Remark 3.6. We had a similar argument for only one basis element e"’.

Remark 3.7. If 3i such that m; = £1 then e]™ -e5" - - - €/~ is a primitive element. So in fact the condition

in Fact [3.5]is iff.

3.3 Non-equationality of F,
We define the formula ¢y (z,y) = Vu, v ([u,v] # 1 = zy # uSv?)

Lemma 3.8. Let F, :== (e1,ea,...). Then for any pair (a,b) which is part of some basis of F,, we have
Fo, E pne (a,b).

Proof. Tt suffices to prove (e, 1) satisfies ¢y, since all primitive elements have the same type (there’s an
automorphism taking any basis to any other basis). So if F ¢, (e1,1) then F ¢ (e1 - e2,1) (since e - eg is
primitive) and so F ¢ (e1,e2) and so any two distinct basis elements satisfy @,e.

Assume Ju, v, [u,v] # 1 such that e; = uSv*. Then (u,v) is a free group of rank 2 (generated by two
non-commuting elements) and so e; is a primitive element of (u,v) from Fact

From Fact e1 is not a primitive element of F,,. Contradiction. O

Define the two matrices for arbitrary n € N:

5 5 5 -1 _—4 —1_—4 -1 _—4
eze1 s R Pt I T I D
€362 €42 " €pq2€2 €y €3 €2 €4 " €2 Chga
5 5 5 —1,—4 _1 -4 1 -4

€n+1€n  €p42€n €on€n €n en+1 €n en+2 T € €ap

Q5 = €?+jei

bkl = e,;le,;f_l
Lemma 3.9. Let A, = (a;j), By, = (b)) as above. if i # k or (i,j) = (k,1) then a;; and by form part
of a basis of of F,

Proof. Consider first the case i # k. Extend {7, k} by a subset S C {i + j,k + [} of maximal size such
that S U {4, k} contains only pairwise distinct elements. Then the set {es|s € S} U {a;;,br} is part of a
basis, as the subgroup it generates contains {e;, e;} U {es|s € S} which is a part of a basis of the same
size.

If (i,j) = (k1) then the set {a;;,b;;} = {€}, i e; 'e; 5} forms a basis of Fy as the subgroup it
generates contains {e;, e;1;} which is part of a basis of the same size. O

Lemma 3.10. Let A, = (a;;), Bn = (bii) as above. Then Fy, E —pn. by any pair (a;j,br) if i = k and
J#l
Proof. If © = k take a;; and by for j # . Then:

aijbr = €}y jeie; ey = €0

€itjs eijrll do not commute if j # I so Fy, F —ne (a5, bir). O



Theorem 3.11. The theory of the free group is non-equational.

Proof. By lemma All pairs of the form (a;;, by;) for ¢ # k and for (4,j) = (k,l) are images of each
other under automorphisms therefore they satisfy the same type. Namely tp (e1, e2).

For the second condition, need to show that Fy, F ¢ne (asj, bi) iff i # &k or (4,5) = (k,1).

From lemma [B.9)if i # k or (i,5) = (k,1) then as;, by are a part of a basis and so from lemma [3.§]
Fo F ¢ne (aij, brr)- In the other direction, if F, F ¢ne (aij, br) then from lemma we have i # k or

(i,4) = (k, D).

So the conditions of Proposition [2.5 hold and the theory of F,, is non-equational. O

4 Non-equationality of free product of groups

4.1 Motivation

Fact 4.1. (Sela) Let G1 * Gy be a nontrivial free product which is not Zy x Zo. Then it is elementarily
equivalent to G, x Go x F for any free group F.

Fact 4.2. (Sela) A free product of stable groups is stable.

From these facts it suffices to show that the theory of a free product G x F,, is not equational to get
a zoo of other examples of non-equational stable theories.

Theorem 4.3. Let G1 *x G5 be a nontrivial free product which is not Zo x Zo. Then its first order theory
is non-equational.

To prove this we will prove the following lemma:

Lemma 4.4. Let F,, = (e1,€2,...,€n,...). Then for any pair (a,b) which is part of some basis of Fy,
we have that G xF,, F o, (a,b).

If we prove this lemma then, remembering that basis elements of I, inside G * F,, still have the same
type, and that lemma [3.10] still holds, it would mean by Proposition 2.5] that theorem [.3]is true.

4.2 Bass-Serre Theory

Definition 4.5. If G = G * G2 We call an expression of the form g := ¢g192 - gn € G a normal form if
9i € (G1 UG2) \ {1} and no two consecutive components are in the same G;.

Fact 4.6. This form is unique.
Definition 4.7. For g € G with normal form g1 92 - - - gn, the syllable length of g is defined syl (g) == n.
Fact 4.8. The identity element is the unique element with syllable length 0

Definition 4.9. An element ¢ with normal form gigs--- g, is called cyclically reduced if g1, g, lie in
different groups G;.

Fact 4.10. Any element g € G can be written as vg'y~ where g’ is cyclically reduced.

Recall Bass-Serre Theory.

Elements of G = G * G2 act on a tree where vertices are cosets gG; for ¢ = 1,2 and an edge exists
between gG; and gGs.

Any edge is trivially stabilized.

Stab (¢G;) = GY.

Elements are either elliptic or hyperbolic.

Nontrivial elliptic elements h stabilize a unique vertex Fix (h) = gG;.

Hyperbolic elements h have an infinite line Ax (h) (the axis of h) on which h acts by translation by
some fixed length tr (k) > 0.

Remark 4.11. Let u,v be hyperbolic elements in G such that their axes intersect in length at least
tr (u) + tr (v) + 1. Then u, v commute.



Fact 4.12. If g, g’ € Gy x Gy are both elliptic and Fix (¢') # Fix (g) then gg’ is hyperbolic with tr (gg’) =
2d (Fix (g) , Fix (¢'))

Remark 4.13. We can think of an elliptic element g € Gy * G2 as having tr (¢g) = 0 and its axis Ax (g)
consists of the point Fix (g).

Fact 4.14. Let u € Gy * G2 be a cyclically reduced hyperbolic element. Then its azis Ax (u) contains Gy
and Gs.

Remark 4.15. If u € G1 * G5 is a hyperbolic element which is not cyclically reduced, then u = yu'y~!

and its axis is a translation of Ax (u’) by 7.

4.3 Proof of Lemma [4.4]
As in the proof of lemma we need to show that for non-commuting u,v € G * F,, then u?v* # e;.

4.3.1 Reduction to a special case

First we take note that it suffices to assume in the lemma that one of u, v is cyclically reduced:

Lemma 4.16. Assume the criterion for lemma[{-4) holds for any elements u,v which do not commute
and where at least one of u,v is cyclically reduced, then it holds for all u,v.

Proof. If u>v* = e; then in the normal form either u starts with the letter e; or v ends with e;. Assume
u starts with e; (proof symmetric otherwise) and neither w,v are cyclically reduced. Then u,v are
conjugates of cyclically reduced non-trivial words and more precisely u = elu’el_l and v = vlv’vl_l with
v; some element in G or a letter in F,, (u/,v' not necessarily cyclically reduced) whence

5 4

wot = eju/®

1 4 1

_ -
e; vvuy

5

If v; # e; then there is no cancellation in the product so u®v* cannot equal e;. Hence e; = v; and so:

Wt = eyuSv ot = e WPy =

€1

And v/%v"* still commute. We can decrease u',v’ further in this manner, and by a length argument
we will reach some commuting vg,ug where v5us = e; and at least one of them cyclically reduced,
contradicting the assumptions. O

4.3.2 Proof of Lemma [4.4]

Proof. As we mentioned, It suffices to show that e; cannot be written as u°v* for some elements u, v that
do not commute, and where one of u,v is cyclically reduced. Assume such u, v existed. Consider their
action on the Bass-Serre tree corresponding to the splitting G « [,

We prove for the case that v is cyclically reduced and starts with a syllable from G. The case where
u is cyclically reduced and starts with a syllable in F,, is the same. The other cases are symmetrical.

Case 1. Assume both u and v are elliptic. Then if Fix (u) # Fix (v) then u®v* is hyperbolic by fact
and so cannot be e; which fixes F,.
If Fix (u) = Fix (v) then this vertex is Fix (e;) = F,, and hence u,v € F,,, non-commuting so
they generate a free group of rank 2. From fact [3.5 this means that e; cannot be primitive in
this group and so from fact [3.3] it is not primitive in F,,. Contradiction.

Case 2. Assume v is elliptic. Then u is hyperbolic. v must fix either F, or G. In the former case
u® = ejv~* fixes F,,, contradicting u being hyperbolic, and in the latter, by lemma m

u® = e;v* has tr (u®) = 2 while we know tr (u®) = 5tr (u) > 5. Contradiction.

Case 3. Assume v is hyperbolic. We can think of u being elliptic as a special case of u being hyperbolic
with tr (u) = 0. so the rest of the proof will assume both v, u are hyperbolic.
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Figure 1: Axes of v,u and the action on F,, by v* = u=%e; where v is hyperbolic and cyclically reduced

Let v = bya1bs - - - bya, in the normal form, where b; € G and a; € F,. Let ujus - - - uy, be the normal form
of u®. If u is also cyclically reduced then Ax (u) and Ax (v) coincide for strictly more than tr (u) + tr (v)
since the path from F, to v*F,, = u~°F, lies in both axes and it is of length at least 4 max {tr (u) ,tr (v)} >
tr (u) 4 tr (v), whence by remark they commute. Contradiction.

Assume that v is not cyclically reduced then. In particular ui,u,, € G or uy,u,, € F,. The latter
cannot hold since then there is no cancellation in «® - v* and hence it cannot be €.

Now in the Bass-Serre tree F,, is moved by v* along its axis to y = v*F,, that is labeled:

y = v3braibs - - - bpanFy, = v3braibs - - - buF,

We assume the axes of u and v coincide for at most tr (u) +tr (v). Otherwise, as above, they commute
and we're done. This implies that each of the two parts of the axis of v outside the axis of u between x
and y is of length at least tr (v) = syl (v) = 2n: The action of u= on z is as follows: It takes z to some
point zg on Ax (u) = Ax (u®), translates it by 5tr (u) to some point yo and then sends it to y by the same
length as d (z,xo). So the axes of u,v coincide for a total length of ¢ = 5tr (u) < tr (u) + tr (v) and:

d(z,y) —d(xo,y0) _ 4tr(v) —c  3tr(v) —tr(u) tr (v) = 2n

d(.’IJ,Z‘O) = d(yan) = 2 2 = 9 =

Where tr (v) > tr (u) since 4tr (v) > 5tr (u) > 4tr (u). (See figure
Now, since u®v* = e;,we must have that > moves z to y along the axis of v. Hence y is also labeled

-1 -1, —1

] —
y=u "F,=u, ---uy; uj

and since u; ! € G we deduce u; ' = b,. We can repeat this argument 2n times, getting:

1 [ (odd)
! a,_;  (ieven)

Where ag := a,, (The last syllable of the previous instance of v)

Since u is not cyclically reduced, it is of the form yu’y~! where v’ is cyclically reduced and syl (v) is
at least 2n. Thus u,,_;+1 = ui_l for i < 2n. Now, on the axis of v, walking 2n steps s starting at x we
have:

1, -1 -1

—1 -1 -1
Fwa Ga Uy, IFU-H U, um—1G7 cee Uy Uy g o um—2n+1G

F,, G, u;nlle, b1a1G, biay - - bpa, G

. . . . . _ —1 _ _ -1
All in normal forms. Then the uniqueness in normal forms implies a, = u,, 5, = U2, = a,, - A
contradiction, since a,! is a nontrivial element in F,,. This concludes that u5v* # e; thus proving this
case. O
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