Non-Equationality of The Free Group

Andrey Zagrebin

December 6, 2018

Intro and Motivation 1

1.1 Outline

In this talk I will prove that the theory of \mathbb{F} is non-equational. The talk is based on an article by Isabel Müller and Rizos Sklinos, building on previous work of Sela. (https://arxiv.org/abs/1703.04169)

The talk will consists of:

- 1. Definitions, motivation and combinatorial tools
- 2. Proof \mathbb{F} is non-equational
- 3. (If time permits) Proof $G_1 * G_2$ (excluding $\mathbb{Z}_2 * \mathbb{Z}_2$) is non-equational, using Bass-Serre Theory.

Note: Most of what's written down was not in the talk itself, but I tried to prove as much of the nontrivial and semi-trivial statements as I could. Some of these are my own proofs so there may be some inaccuracies.

1.2Definitions

Definition 1.1. Let T be a first order theory. A formula $\varphi(x, y)$ is called an *equation* in x (x is a variable, y is a parameter, both are tuples) if any collection of instances $\varphi(x, b)$ is equivalent to a finite sub-collection in T. That is, for any $(b_i)_{i \in I}$ we have a finite $I_0 \subseteq I$ s.t.:

$$\bigcap_{i \in I} \varphi\left(x, b_i\right) = \bigcap_{i \in I_0} \varphi\left(x, b_i\right)$$

Equivalently,

Claim 1.2. $\varphi(x, y)$ is an equation in x iff the family of intersections of instances $\varphi(x, b)$ has the DCC.

Proof. (Same proof as for "Module is Noetherian iff sub-modules are finitely generated")

 (\Rightarrow) If we have an ascending chain $I_1 \subseteq I_2 \subseteq \cdots$ of indexing sets that induces a descending chain:

$$\bigcap_{i \in I_1} \varphi\left(x, b_i\right) \supseteq \bigcap_{i \in I_2} \varphi\left(x, b_i\right) \supseteq \cdots$$

Then if we take $I = \bigcup_{n \in \mathbb{N}} I_n$ we have $\bigcap_{i \in I} \varphi(x, b_i) = \bigcap_{i \in I_0} \varphi(x, b_i)$ for a finite subset I_0 of I and so there must be some I_{n_0} for which $I_0 \subseteq I_{n_0}$. So for any $n > n_0$, $I_0 \subseteq I_m \subseteq I_n$ and:

$$\bigcap_{i \in I_n} \varphi\left(x, b_i\right) \supseteq \bigcap_{i \in I} \varphi\left(x, b_i\right) = \bigcap_{i \in I_0} \varphi\left(x, b_i\right) \supseteq \bigcap_{i \in I_n} \varphi\left(x, b_i\right)$$

therefore $\bigcap_{i \in I_n} \varphi(x, b_i) = \bigcap_{i \in I} \varphi(x, b_i)$ and the chain is stable from n_0 . (\Leftarrow) If we have the DCC and there is an indexing set I for which we take $\bigcap_{i \in I} \varphi(x, b_i)$, then take the family

$$\Omega = \left\{ \bigcap_{i \in J} \varphi\left(x, b_i\right) | J \subseteq I \text{ is finite} \right\}$$

It is nonempty since $|M| = \bigcap_{i \in \mathscr{G}} \varphi(x, b_i) \in \Omega$ and any descending chain has a lower bound in this set. (A descending chain $(\bigcap_{i \in J_n} \varphi(x, b_i))$ is stable hence there is some n_0 s.t. the chain equals $\bigcap_{i \in J_{n_0}} \varphi(x, b_i) \in \Omega$ from n_0 and this is its lower bound). Therefore (Zorn) it has a minimal element $\bigcap_{i \in I_0} \varphi(x, b_i)$. Now, it is always true that:

$$\bigcap_{i \in I_0} \varphi\left(x, b_i\right) \supseteq \bigcap_{i \in I} \varphi\left(x, b_i\right)$$

Since $I_0 \subseteq I$ so if these are not equal there exists $j \in I \setminus I_0$ such that:

$$\bigcap_{i \in I_{0}} \varphi\left(x, b_{i}\right) \supsetneq \bigcap_{i \in I_{0} \cup \{j\}} \varphi\left(x, b_{i}\right) \supseteq \bigcap_{i \in I} \varphi\left(x, b_{i}\right)$$

So $I_0 \cup \{j\} \in \Omega$ contradicts the minimality of I_0 . Hence there is an equality.

Remark 1.3. Equationality is a generalization of Noetherianity of Modules and Rings. Collections of b_i are the restricting conditions (Such as generators of ideals in a ring) and they have an ACC on their closure. $\bigcap_i \varphi(x, b_i)$ are the underlying sets (algebraic/closed sets of the Zariski topology) and they admit a DCC (Noetherian topological space). Moreover, a ring is Noetherian iff every ideal is finitely generated, corresponding to our first definition.

Definition 1.4. A theory T is *n*-equational if every formula $\varphi(x, y)$ where |x| = n (x is an *n*-tuple) is a Boolean combination of equations.

Definition 1.5. T is equational if it is n-equational for all $n \in \mathbb{N}$.

Example 1.6. Some examples of equations:

- 1. x = y
- 2. For any definable equivalence relation $\sim, x \sim y$ is an equation.
- 3. $x \neq y$ is not an equation (for an infinite model) \rightarrow So for an equation φ ; $\neg \varphi$ is not necessarily an equation.
- 4. In algebraically closed fields $\varphi(x, y) \rightleftharpoons \sum_{\alpha} f_{\alpha}(y) x^{\alpha} = 0$ is an equation. \rightarrow Precisely because $\mathbb{k}[x]$ is a Noetherian ring (Hilbert's Basissatz)

1.3 Some properties of equations

Remark 1.7. $\varphi(x, y)$ is **not** an equation iff there exists an infinite sequence $\{c_n\}_{n \in \mathbb{N}}$ and the following is a properly decreasing chain:

$$\varphi(x,c_0) \supsetneq \varphi(x,c_0) \cap \varphi(x,c_1) \supsetneq \cdots \supsetneq \bigcap_{k \le n} \varphi(x,c_k) \supsetneq \cdots$$

Proof. (\Leftarrow) Immediate from the DCC.

 (\Rightarrow) If $\varphi(x, y)$ is not an equation, then there is a set I such that $\bigcap_{i \in I} \varphi(x, b_i)$ but for every finite subset $J \subseteq I$ it holds that:

$$\bigcap_{i \in I} \varphi\left(x, b_i\right) \supsetneq \prod_{i \in J} \varphi\left(x, b_i\right)$$

We can then choose $\{b_{i_n}\}_{n \in \mathbb{N}}$ and indexing sets $I_n = \{i_k\}_{k=0}^n$ such that:

$$\bigcap_{i \in I_0} \varphi(x, b_i) \supsetneq \bigcap_{i \in I_1} \varphi(x, b_i) \supsetneq \cdots \supsetneq \bigcap_{i \in I_n} \varphi(x, b_i) \supsetneq \cdots$$
$$\varphi(x, b_{i_0}) \supsetneq \varphi(x, b_{i_0}) \cap \varphi(x, b_{i_1}) \supsetneq \cdots \supsetneq \bigcap_{k \le n} \varphi(x, b_{i_k}) \supsetneq \cdots$$

Since all I_n are indeed finite. Set $c_n = b_{i_n}$ and we are done.

Fact 1.8. If for arbitrarily large n there exists a sequence $\{b_i\}_{i < n}$ such that the following is a decreasing sequence:

$$\varphi(x, b_0) \stackrel{\supset}{\neq} \varphi(x, b_0) \cap \varphi(x, b_1) \stackrel{\supset}{\neq} \cdots \stackrel{\supset}{\neq} \bigcap_{i < n} \varphi(x, b_i)$$

Then there exists an infinite properly decreasing sequence:

$$\varphi\left(x,c_{0}\right) \supsetneq \varphi\left(x,c_{0}\right) \cap \varphi\left(x,c_{1}\right) \supsetneq \cdots \supsetneq \bigcap_{0 \leq k \leq n} \varphi\left(x,c_{k}\right) \supseteq \cdots$$

The proof of this fact uses a compactness argument (which we didn't discuss in the seminar) on formulas of the type:

$$\bigwedge_{i=1}^{n} (\exists x) \left(\varphi \left(x, y_i \right) \land \left(\neg \bigwedge_{j=0}^{i-1} \varphi \left(x, y_j \right) \right) \right)$$

One can also follow the proof of the stronger argument in the proof of Proposition 2.11 here: $https://www.math.uwaterloo.ca/\sim rmoosa/ohara.pdf$

Remark 1.9. For $\varphi(x; y), \varphi^{op}(x; y) \coloneqq \varphi(y; x)$ is an equation (w.r.t. y).

Proof. Suffices to show one direction from symmetry. Assume $\varphi(x, y)$ is not an equation in y. Then from remark 1.7 We can then choose $\{a_n\}_{n \in \mathbb{N}}$ such that:

$$\varphi(a_0, y) \supsetneq \varphi(a_0, y) \cap \varphi(a_1, y) \supsetneq \cdots \supsetneq \bigcap_{k \le n} \varphi(a_k, y) \supsetneq \cdots$$

Then there exist for each $j \in \mathbb{N}$;

$$b_j \in \bigcap_{i < j} \varphi\left(a_j, y\right) \smallsetminus \varphi\left(a_j, y\right) =$$

whence $\vDash \varphi(a_i, b_j)$ for i < j but $\nvDash \varphi(a_i, b_i)$.

This condition precisely means that for each n:

$$\varphi(x,b_n) \supsetneq \varphi(x,b_n) \cap \varphi(x,b_{n-1}) \supsetneq \cdots \supsetneq \bigcap_{0 \le k \le n} \varphi(x,b_k)$$

And by compactness there exists a sequence $\{c_k\}_{k\in\mathbb{N}}$:

$$\varphi(x,c_0) \supsetneq \varphi(x,c_0) \cap \varphi(x,c_1) \supsetneq \cdots \supsetneq \bigcap_{0 \le k \le n} \varphi(x,c_k) \supseteq \cdots$$

Contradicting φ being an equation in x.

Proof. Suffices to show for two equations. Assume $\varphi_1(x, y), \varphi_2(x, y)$ are equations. Then take the formulas: for some indexing sets I there exist I_1, I_2 such that:

$$\bigcap_{i \in I} \varphi_1(x, b_i) = \bigcap_{i \in I_1} \varphi_1(x, b_i)$$
$$\bigcap_{i \in I} \varphi_2(x, b_i) = \bigcap_{i \in I_2} \varphi_2(x, b_i)$$

And we have:

$$\begin{split} \bigcap_{i \in I} \left(\varphi_1\left(x, b_i\right) \lor \varphi_2\left(x, b_i\right)\right) &= \left(\bigcap_{i \in I} \varphi_1\left(x, b_i\right)\right) \cup \left(\bigcap_{i \in I} \varphi_2\left(x, b_i\right)\right) = \\ &= \left(\bigcap_{i \in I_1} \varphi_1\left(x, b_i\right)\right) \cup \left(\bigcap_{i \in I_2} \varphi_2\left(x, b_i\right)\right) = \\ &= \left(\bigcap_{i \in I_1 \cup I_2} \varphi_1\left(x, b_i\right)\right) \cup \left(\bigcap_{i \in I_1 \cup I_2} \varphi_2\left(x, b_i\right)\right) = \\ &= \bigcap_{i \in I_1 \cup I_2} \left(\varphi_1\left(x, b_i\right) \lor \varphi_2\left(x, b_i\right)\right) \end{split}$$

Noting that adding I_2 to I_1 does not restrict $\bigcap_{i \in I_1} \varphi_1(x, b_i)$ further since it already includes all the conditions of $\varphi_1(x, b_i)$ for $i \in I$ and vice versa on $\varphi_2(x, b_i)$. And similarly:

.

$$\bigcap_{i \in I} (\varphi_1(x, b_i) \land \varphi_2(x, b_i)) = \left(\bigcap_{i \in I} \varphi_1(x, b_i)\right) \cap \left(\bigcap_{i \in I} \varphi_2(x, b_i)\right) =$$
$$= \left(\bigcap_{i \in I_1} \varphi_1(x, b_i)\right) \cap \left(\bigcap_{i \in I_2} \varphi_2(x, b_i)\right) =$$
$$= \left(\bigcap_{i \in I_1 \cup I_2} \varphi_1(x, b_i)\right) \cap \left(\bigcap_{i \in I_1 \cup I_2} \varphi_2(x, b_i)\right) =$$
$$= \bigcap_{i \in I_1 \cup I_2} (\varphi_1(x, b_i) \land \varphi_2(x, b_i))$$

Where since I_1, I_2 are finite, their union is finite.

Corollary 1.11. Finite conjunctions and disjunctions of co-equations are co-equations:

Proof. Again, suffices to show for two co-equations. Note that for φ, ψ equations,

$$\neg \varphi (x, y) \land \neg \psi (x, y) = \neg \left(\varphi (x, y) \lor \psi (x, y)\right)$$
$$\neg \varphi (x, y) \lor \neg \psi (x, y) = \neg \left(\varphi (x, y) \land \psi (x, y)\right)$$

The rest follows from the lemma.

1.4 Motivation

Question: Does 1-equational imply equational? No contradictions yet. Open problem. We will show \mathbb{F} is not 1-equational.

Motivation: Collect as many examples of non-equational theories. \mathbb{F} is an example of a stable but non-equational theory which is a surprising result.

2 Tools

We try to approach the concept of equationality in a combinatorial manner, starting with a combinatorial criterion for some formula being an equation:

Lemma 2.1. $\varphi(x, y)$ is **not** an equation iff and only if for arbitrarily large $n \in \mathbb{N}$ there are n-tuples $(a_i), (b_i)$ such that $\vDash \varphi(a_i, b_j)$ for i < j but $\nvDash \varphi(a_i, b_i)$.

Proof. We will show this criterion for $\varphi(x, y)$ not being an equation in y. It not being an equation in x follows from remark 1.9.

 (\Leftarrow) If such tuples exist then

$$b_j \in \bigcap_{i < j} \varphi\left(a_i, y\right) \smallsetminus \bigcap_{i \le j} \varphi\left(a_i, y\right)$$

And then:

$$\varphi(a_0, y) \supsetneq (\varphi(a_0, y) \cap \varphi(a_1, y)) \supsetneq \cdots \supsetneq \bigcap_{k \le n} \varphi(a_k, y)$$

And we have an arbitrarily long descending chain, hence there must be an infinite unstable descending chain. So $\varphi(x, y)$ is not an equation in y and therefore not an equation in x.

 (\Rightarrow) Conversely, if $\varphi(x, y)$ is not an equation in y then there exists an infinite series $\{a_i\}$ and an infinite properly descending chain:

$$\varphi(a_0, y) \supsetneq (\varphi(a_0, y) \cap \varphi(a_1, y)) \supsetneq \cdots \supsetneq \bigcap_{k \le n} \varphi(a_k, y)$$

So we can find $b_j \in \bigcap_{i < j} \varphi(a_i, y) \setminus \bigcap_{i \le j} \varphi(a_i, y)$ for all $j \in \mathbb{N}$. In particular if we fix n we can take the tuples $(a_i)_{i \le n}$ and $(b_i)_{i \le n}$ and our criterion is satisfied.

Fact 2.2. Any Boolean combination φ of atomic formulas (φ_k) is equivalent to a formula in disjunctive normal form (DNF)

$$\psi \leftrightarrows \bigvee_{n \le m} \left(\bigwedge_{j \le \ell_n} \psi_{i,j} \right)$$

Where $\psi_{i,j}$ is some $\varphi_{k_{i,j}}$ or $\neg \varphi_{k_{i,j}}$

Corollary 2.3. Assume $\varphi(x, y)$ equivalent to Boolean combination of equations. Then $\varphi(x, y)$ is equivalent to a formula of the form:

$$\psi\left(x,y\right) \coloneqq \bigvee_{n \leq m} \left(\psi_{1}^{n}\left(x,y\right) \land \neg \psi_{2}^{n}\left(x,y\right)\right)$$

For some equations ψ_1^i, ψ_2^i and $m \in \mathbb{N}$.

Proof. Write $\psi(x, y)$ in DNF. Inside each element of the disjunction, there is a finite conjunction of equations and co-equations. Each such element is equivalent to a conjunction of an equation and a co-equation therefore $\varphi(x, y)$ is equivalent to $\psi(x, y)$.

Lemma 2.4. If $\varphi(x,y)$ is a formula then if for arbitrarily large $n \in \mathbb{N}$ exist $n \times n$ matrices

$$A_n \coloneqq (a_{ij}) B_n \coloneqq (b_{ij})$$

such that $\vDash \varphi(a_{ij}, b_{kl})$ iff $i \neq k$ or (i, j) = (k, l) then $\varphi(x, y)$ is not equivalent to a formula of the form $\psi_1(x, y) \land \neg \psi_2(x, y)$ where ψ_1 and ψ_2 are equations.

Proof. Part 1: First we prove that for arbitrarily large n every row (in both matrices simultaneously) witnesses that $\neg \varphi(x, y)$ is not equivalent to an equation.

Fix i_0 . Then we have $(a_{i_0 j})$ and $(b_{i_0 j})$ as *n*-tuples with:

$$(\models \varphi \left(a_{i_0 j}, b_{i_0 l} \right)) \iff j = l$$
$$(\models \neg \varphi \left(a_{i_0 j}, b_{i_0 l} \right)) \iff j \neq l$$

Specifically if j < l, $\vDash \neg \varphi(a_{i_0j}, b_{i_0l})$. Therefore φ is not equivalent to an equation by Lemma 2.1 **Part 2:** Assume the contrary of the conclusion, i.e. that $\varphi(x, y) \equiv \psi_1(x, y) \land \neg \psi_2(x, y)$ and reach a contradiction.

Assuming this, we have that $\neg \varphi(x, y) \equiv \neg \psi_1(x, y) \lor \psi_2(x, y)$.

If for some i_0 we have $\vDash \psi_1(a_{i_0,j}, b_{i_0,l})$ for all j, l then for i_0 we have

$$\neg \varphi \left(a_{i_0 j}, b_{i_0, l} \right) \leftrightarrow \psi_2 \left(a_{i_0 j}, b_{i_0 l} \right)$$

For all j, l. Contradicting that ψ_2 is an equation but by Part 1 of the proof the LHS satisfies the criterion for not being an equation.

Part 3: Now from part 2, for any *i* there exist some j_i, l_i with $\models \neg \psi_1(a_{ij_i}, b_{il_i})$. Set new *n*-tuples

 $(a_{ij_i}), (b_{kl_k})$

For $i \neq k$ we have $\vDash \varphi(a_{ij_i}, b_{kl_k})$ (from the condition of the lemma). Remembering our original assumption $\varphi(x, y) \equiv \psi_1(x, y) \land \neg \psi_2(x, y)$, For i < k then we have $\vDash \varphi(a_{ij_i}, b_{kl_k})$ and hence $\vDash \psi_1(a_{ij_i}, b_{kl_k})$ and also $\nvDash \psi_1(a_{ij_i}, b_{il_k})$. Contradicting that ψ_1 is an equation again by the criterion of Lemma 2.1.

Proposition 2.5. Suppose $\varphi(x, y)$ a formula, A_n, B_n arbitrarily large matrices s.t.

- 1. There is a type which is satisfied by any tuple (a_{ij}, b_{kl}) for $i \neq k$ or (i, j) = (k, l)
- 2. The formula $\varphi(x, y)$ is satisfied by (a_{ij}, b_{kl}) if and only if $i \neq k$ or (i, j) = (k, l)

Then T is non-equational. (Specifically, it is not n-equational for |x| = n)

Proof. We will show that φ is not a Boolean combination of equations. Assume the contrary. Then by Remark 2.3, φ is equivalent to

$$\varphi\left(x,y\right) = \bigvee_{0 \leq m \leq n} \left(\psi_{1}^{m}\left(x,y\right) \land \neg \psi_{2}^{m}\left(x,y\right)\right)$$

We have $\vDash \varphi(a_{11}, b_{11})$. So there is some m_0 such that if we define

$$\theta(x,y) \coloneqq (\psi_1^{m_0}(x,y) \land \neg \psi_2^{m_0}(x,y))$$

Then

$$\vDash \theta (a_{11}, b_{11}) = (\psi_1^{m_0} (a_{11}, b_{11}) \land \neg \psi_2^{m_0} (a_{11}, b_{11}))$$

Since $tp(a_{11}, b_{11}) = tp(a_{ij}, b_{kl})$ for $i \neq k$ or (i, j) = (k, l) then we can deduce $\models \theta(a_{ij}, b_{kl})$ for such i, j, k, l.

If i = k but $j \neq l$ then $\vDash \neg \varphi(a_{ij}, b_{kl})$. In particular $\vDash \neg \theta(a_{ij}, b_{kl})$.

By Lemma 2.4 this means that θ is not a conjunction of an equation and a negation of an equation.

3 Non-Equationality of \mathbb{F}

3.1 Working in \mathbb{F}_{ω}

Fact 3.1. (Sela) Non-abelian free groups share the same theory

This fact allows us to work in \mathbb{F}_{ω} . The motivation for it is so that we have a countable basis to create arbitrarily large matrices that satisfy the condition of Proposition 2.5 with the correct formula and type.

3.2 Definitions and useful properties of \mathbb{F}

Definition 3.2. (Reminder) An element of \mathbb{F} is called *primitive* if it is part of some basis of \mathbb{F} .

Fact 3.3. Let a be a primitive element of \mathbb{F} . Suppose a belongs to a subgroup H of \mathbb{F} , then a is a primitive element of H.

Proof. Recall the Kurosh subgroup theorem:

Fact 3.4. (Kurosh subgroup theorem) If G = A * B and $H \leq G$, then:

$$H = \left\lfloor \underset{A^g:g \in G}{\circledast} (H \cap A^g) \right\rfloor * \left\lfloor \underset{B^g:g \in G}{\circledast} (H \cap B^g) \right\rfloor$$

(Note: \circledast is supposed to be a big asterisk * representing the free product but I had some technical difficulties with it)

If a is a primitive element and $a \in S$ then let S be the rest of the basis to which it belongs. $\mathbb{F} = \langle a \rangle * \mathbb{F}(S)$ and so:

$$H = (H \cap \langle a \rangle) * \left[\underset{\langle a \rangle^g : g \in \mathbb{F}}{\circledast} (H \cap \langle a \rangle^g) \right] * \left[\underset{\mathbb{F}(S)^g : g \in \mathbb{F}}{\circledast} (H \cap \mathbb{F}(S)^g) \right]$$

Where $(H \cap \langle a \rangle) = \langle a \rangle \subseteq H$ and the rest of the free product is some free group with some basis T so $\{a\} \cup T$ is a basis for H.

Fact 3.5. Let e_1, \ldots, e_n be a basis of the free group \mathbb{F}_n of rank n. Then $e_1^{m_1} \cdot e_2^{m_2} \cdots e_n^{m_n}$ is not a primitive element if for all $i, m_i \neq \pm 1$

Remark 3.6. We had a similar argument for only one basis element $e_i^{m_i}$.

Remark 3.7. If $\exists i$ such that $m_i = \pm 1$ then $e_1^{m_1} \cdot e_2^{m_2} \cdots e_n^{m_n}$ is a primitive element. So in fact the condition in Fact 3.5 is *iff.*

3.3 Non-equationality of \mathbb{F}_{ω}

We define the formula $\varphi_{ne}(x,y) = \forall u, v ([u,v] \neq 1 \rightarrow xy \neq u^5 v^4)$

Lemma 3.8. Let $\mathbb{F}_{\omega} := \langle e_1, e_2, \ldots \rangle$. Then for any pair (a, b) which is part of some basis of \mathbb{F}_{ω} we have $\mathbb{F}_{\omega} \models \varphi_{ne}(a, b)$.

Proof. It suffices to prove $(e_1, 1)$ satisfies φ_{ne} since all primitive elements have the same type (there's an automorphism taking any basis to any other basis). So if $\vDash \varphi_{ne}(e_1, 1)$ then $\vDash \varphi(e_1 \cdot e_2, 1)$ (since $e_1 \cdot e_2$ is primitive) and so $\vDash \varphi(e_1, e_2)$ and so any two distinct basis elements satisfy φ_{ne} .

Assume $\exists u, v, [u, v] \neq 1$ such that $e_1 = u^5 v^4$. Then $\langle u, v \rangle$ is a free group of rank 2 (generated by two non-commuting elements) and so e_1 is a primitive element of $\langle u, v \rangle$ from Fact 3.3.

From Fact 3.5, e_1 is not a primitive element of \mathbb{F}_{ω} . Contradiction.

Define the two matrices for arbitrary $n \in \mathbb{N}$:

$$\mathbf{A}_{n} = \begin{pmatrix} e_{2}^{5}e_{1} & e_{3}^{5}e_{1} & \cdots & e_{n+1}^{5}e_{1} \\ e_{3}^{5}e_{2} & e_{4}^{5}e_{2} & \cdots & e_{n+2}^{5}e_{2} \\ \vdots & \vdots & \ddots & \vdots \\ e_{n+1}^{5}e_{n} & e_{n+2}^{5}e_{n} & \cdots & e_{2n}^{5}e_{n} \end{pmatrix} \qquad \mathbf{B}_{n} = \begin{pmatrix} e_{1}^{-1}e_{2}^{-4} & e_{1}^{-1}e_{3}^{-4} & \cdots & e_{1}^{-1}e_{n+1} \\ e_{2}^{-1}e_{3}^{-4} & e_{2}^{-1}e_{4}^{-4} & \cdots & e_{2}^{-1}e_{n+2} \\ \vdots & \vdots & \ddots & \vdots \\ e_{n}^{-1}e_{n+1}^{-4} & e_{n}^{-1}e_{n+2}^{-4} & \cdots & e_{n}^{-1}e_{2n}^{-4} \end{pmatrix}$$

$$a_{ij} = e_{i+j}^5 e_i$$
$$b_{kl} = e_k^{-1} e_{k+l}^{-4}$$

Lemma 3.9. Let $A_n = (a_{ij})$, $B_n = (b_{kl})$ as above. if $i \neq k$ or (i, j) = (k, l) then a_{ij} and b_{kl} form part of a basis of of \mathbb{F}_{ω}

Proof. Consider first the case $i \neq k$. Extend $\{i, k\}$ by a subset $S \subseteq \{i + j, k + l\}$ of maximal size such that $S \cup \{i, k\}$ contains only pairwise distinct elements. Then the set $\{e_s | s \in S\} \cup \{a_{ij}, b_{kl}\}$ is part of a basis, as the subgroup it generates contains $\{e_i, e_k\} \cup \{e_s | s \in S\}$ which is a part of a basis of the same size.

If (i, j) = (k, l) then the set $\{a_{ij}, b_{ij}\} = \{e_{i+j}^5 e_i, e_i^{-1} e_{i+j}^{-4}\}$ forms a basis of \mathbb{F}_2 as the subgroup it generates contains $\{e_i, e_{i+j}\}$ which is part of a basis of the same size.

Lemma 3.10. Let $A_n = (a_{ij})$, $B_n = (b_{kl})$ as above. Then $\mathbb{F}_{\omega} \models \neg \varphi_{ne}$ by any pair (a_{ij}, b_{kl}) if i = k and $j \neq l$.

Proof. If i = k take a_{ij} and b_{il} for $j \neq l$. Then:

$$a_{ij}b_{kl} = e_{i+j}^5 e_i e_i^{-1} e_{i+l}^{-4} = e_{i+j}^5 e_{i+l}^{-4}$$

 e_{i+j}, e_{i+l}^{-1} do not commute if $j \neq l$ so $\mathbb{F}_{\omega} \models \neg \varphi_{ne}(a_{ij}, b_{il})$.

Theorem 3.11. The theory of the free group is non-equational.

Proof. By lemma 3.9 All pairs of the form (a_{ij}, b_{kl}) for $i \neq k$ and for (i, j) = (k, l) are images of each other under automorphisms therefore they satisfy the same type. Namely $tp(e_1, e_2)$.

For the second condition, need to show that $\mathbb{F}_{\omega} \vDash \varphi_{ne}(a_{ij}, b_{kl})$ iff $i \neq k$ or (i, j) = (k, l).

From lemma 3.9 if $i \neq k$ or (i, j) = (k, l) then a_{ij}, b_{kl} are a part of a basis and so from lemma 3.8 $\mathbb{F}_{\omega} \models \varphi_{ne}(a_{ij}, b_{kl})$. In the other direction, if $\mathbb{F}_{\omega} \models \varphi_{ne}(a_{ij}, b_{kl})$ then from lemma 3.10 we have $i \neq k$ or (i, j) = (k, l).

So the conditions of Proposition 2.5 hold and the theory of \mathbb{F}_{ω} is non-equational.

4 Non-equationality of free product of groups

4.1 Motivation

Fact 4.1. (Sela) Let $G_1 * G_2$ be a nontrivial free product which is not $\mathbb{Z}_2 * \mathbb{Z}_2$. Then it is elementarily equivalent to $G_1 * G_2 * \mathbb{F}$ for any free group \mathbb{F} .

Fact 4.2. (Sela) A free product of stable groups is stable.

From these facts it suffices to show that the theory of a free product $G * \mathbb{F}_{\omega}$ is not equational to get a zoo of other examples of non-equational stable theories.

Theorem 4.3. Let $G_1 * G_2$ be a nontrivial free product which is not $\mathbb{Z}_2 * \mathbb{Z}_2$. Then its first order theory is non-equational.

To prove this we will prove the following lemma:

Lemma 4.4. Let $\mathbb{F}_{\omega} = \langle e_1, e_2, \dots, e_n, \dots \rangle$. Then for any pair (a, b) which is part of some basis of \mathbb{F}_{ω} we have that $G * \mathbb{F}_{\omega} \models \varphi_{ne}(a, b)$.

If we prove this lemma then, remembering that basis elements of \mathbb{F}_{ω} inside $G * \mathbb{F}_{\omega}$ still have the same type, and that lemma 3.10 still holds, it would mean by Proposition 2.5 that theorem 4.3 is true.

4.2 Bass-Serre Theory

Definition 4.5. If $G = G_1 * G_2$ We call an expression of the form $g := g_1 g_2 \cdots g_n \in G$ a normal form if $g_i \in (G_1 \cup G_2) \setminus \{1\}$ and no two consecutive components are in the same G_i .

Fact 4.6. This form is unique.

Definition 4.7. For $g \in G$ with normal form $g_1g_2 \cdots g_n$, the syllable length of g is defined syl(g) := n.

Fact 4.8. The identity element is the unique element with syllable length 0

Definition 4.9. An element g with normal form $g_1g_2\cdots g_n$ is called cyclically reduced if g_1, g_n lie in different groups G_i .

Fact 4.10. Any element $g \in G$ can be written as $\gamma g' \gamma^{-1}$ where g' is cyclically reduced.

Recall Bass-Serre Theory.

Elements of $G = G_1 * G_2$ act on a tree where vertices are cosets gG_i for i = 1, 2 and an edge exists between gG_1 and gG_2 .

Any edge is trivially stabilized.

 $\operatorname{Stab}\left(gG_{i}\right)=G_{i}^{g}.$

Elements are either elliptic or hyperbolic.

Nontrivial elliptic elements h stabilize a unique vertex $Fix(h) = gG_i$.

Hyperbolic elements h have an infinite line Ax(h) (the axis of h) on which h acts by translation by some fixed length tr(h) > 0.

Remark 4.11. Let u, v be hyperbolic elements in G such that their axes intersect in length at least tr (u) + tr(v) + 1. Then u, v commute.

Fact 4.12. If $g, g' \in G_1 * G_2$ are both elliptic and $\operatorname{Fix}(g') \neq \operatorname{Fix}(g)$ then gg' is hyperbolic with $\operatorname{tr}(gg') = 2d(\operatorname{Fix}(g), \operatorname{Fix}(g'))$

Remark 4.13. We can think of an elliptic element $g \in G_1 * G_2$ as having tr (g) = 0 and its axis Ax (g) consists of the point Fix (g).

Fact 4.14. Let $u \in G_1 * G_2$ be a cyclically reduced hyperbolic element. Then its axis Ax(u) contains G_1 and G_2 .

Remark 4.15. If $u \in G_1 * G_2$ is a hyperbolic element which is not cyclically reduced, then $u = \gamma u' \gamma^{-1}$ and its axis is a translation of Ax (u') by γ .

4.3 Proof of Lemma 4.4

As in the proof of lemma 3.8 we need to show that for non-commuting $u, v \in G * \mathbb{F}_{\omega}$ then $u^5 v^4 \neq e_1$.

4.3.1 Reduction to a special case

First we take note that it suffices to assume in the lemma that one of u, v is cyclically reduced:

Lemma 4.16. Assume the criterion for lemma 4.4 holds for any elements u, v which do not commute and where at least one of u, v is cyclically reduced, then it holds for all u, v.

Proof. If $u^5v^4 = e_1$ then in the normal form either u starts with the *letter* e_1 or v ends with e_1 . Assume u starts with e_1 (proof symmetric otherwise) and neither u, v are cyclically reduced. Then u, v are conjugates of cyclically reduced non-trivial words and more precisely $u = e_1u'e_1^{-1}$ and $v = v_1v'v_1^{-1}$ with v_i some element in G or a letter in \mathbb{F}_{ω} (u', v') not necessarily cyclically reduced) whence

$$u^5 v^4 = e_1 u'^5 e_1^{-1} v_1 v'^4 v_1^{-1}$$

If $v_1 \neq e_1$ then there is no cancellation in the product so u^5v^4 cannot equal e_1 . Hence $e_1 = v_1$ and so:

$$u^5 v^4 = e_1 u'^5 v'^4 v_1^{-1} = e_1 \iff u'^5 v'^4 = e_1$$

And $u'^5 v'^4$ still commute. We can decrease u', v' further in this manner, and by a length argument we will reach some commuting v_0, u_0 where $v_0^5 u_0^4 = e_1$ and at least one of them cyclically reduced, contradicting the assumptions.

4.3.2 Proof of Lemma 4.4

Proof. As we mentioned, It suffices to show that e_1 cannot be written as u^5v^4 for some elements u, v that do not commute, and where one of u, v is cyclically reduced. Assume such u, v existed. Consider their action on the Bass-Serre tree corresponding to the splitting $G * \mathbb{F}_{\omega}$

We prove for the case that v is cyclically reduced and starts with a syllable from G. The case where u is cyclically reduced and starts with a syllable in \mathbb{F}_{ω} is the same. The other cases are symmetrical.

- Case 1. Assume both u and v are elliptic. Then if $\operatorname{Fix}(u) \neq \operatorname{Fix}(v)$ then u^5v^4 is hyperbolic by fact 4.12 and so cannot be e_1 which fixes \mathbb{F}_{ω} . If $\operatorname{Fix}(u) = \operatorname{Fix}(v)$ then this vertex is $\operatorname{Fix}(e_1) = \mathbb{F}_{\omega}$ and hence $u, v \in \mathbb{F}_{\omega}$, non-commuting so they generate a free group of rank 2. From fact 3.5 this means that e_1 cannot be primitive in this group and so from fact 3.3 it is not primitive in \mathbb{F}_{ω} .
- Case 2. Assume v is elliptic. Then u is hyperbolic. v must fix either \mathbb{F}_{ω} or G. In the former case $u^5 = e_1 v^{-4}$ fixes \mathbb{F}_{ω} , contradicting u being hyperbolic, and in the latter, by lemma 4.12 $u^5 = e_1 v^{-4}$ has tr $(u^5) = 2$ while we know tr $(u^5) = 5$ tr $(u) \ge 5$. Contradiction.
- Case 3. Assume v is hyperbolic. We can think of u being elliptic as a special case of u being hyperbolic with tr(u) = 0. so the rest of the proof will assume both v, u are hyperbolic.

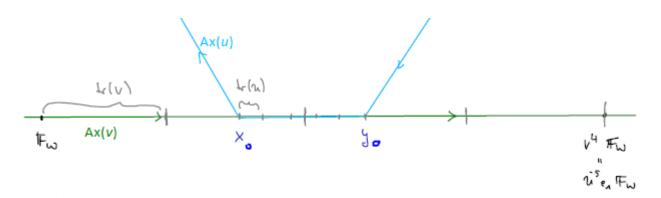


Figure 1: Axes of v, u and the action on \mathbb{F}_{ω} by $v^4 = u^{-5}e_1$ where v is hyperbolic and cyclically reduced

Let $v = b_1 a_1 b_2 \cdots b_n a_n$ in the normal form, where $b_i \in G$ and $a_i \in \mathbb{F}_{\omega}$. Let $u_1 u_2 \cdots u_m$ be the normal form of u^5 . If u is also cyclically reduced then Ax (u) and Ax (v) coincide for strictly more than tr (u) + tr (v)since the path from \mathbb{F}_{ω} to $v^4 \mathbb{F}_{\omega} = u^{-5} \mathbb{F}_{\omega}$ lies in both axes and it is of length at least $4 \max \{ \text{tr }(u), \text{tr }(v) \} >$ tr (u) + tr (v), whence by remark 4.11 they commute. Contradiction.

Assume that u is not cyclically reduced then. In particular $u_1, u_m \in G$ or $u_1, u_m \in \mathbb{F}_{\omega}$. The latter cannot hold since then there is no cancellation in $u^5 \cdot v^4$ and hence it cannot be e_1 .

Now in the Bass-Serre tree \mathbb{F}_{ω} is moved by v^4 along its axis to $y = v^4 \mathbb{F}_{\omega}$ that is labeled:

$$y = v^3 b_1 a_1 b_2 \cdots b_n a_n \mathbb{F}_{\omega} = v^3 b_1 a_1 b_2 \cdots b_n \mathbb{F}_{\omega}$$

We assume the axes of u and v coincide for at most tr (u) + tr(v). Otherwise, as above, they commute and we're done. This implies that each of the two parts of the axis of v outside the axis of u between xand y is of length at least tr (v) = syl(v) = 2n: The action of u^{-5} on x is as follows: It takes x to some point x_0 on Ax $(u) = Ax(u^5)$, translates it by 5tr (u) to some point y_0 and then sends it to y by the same length as $d(x, x_0)$. So the axes of u, v coincide for a total length of $c = 5tr(u) \le tr(u) + tr(v)$ and:

$$d(x, x_0) = d(y_0, y) = \frac{d(x, y) - d(x_0, y_0)}{2} = \frac{4\operatorname{tr}(v) - c}{2} \ge \frac{3\operatorname{tr}(v) - \operatorname{tr}(u)}{2} \ge \operatorname{tr}(v) = 2m$$

Where $\operatorname{tr}(v) \ge \operatorname{tr}(u)$ since $\operatorname{4tr}(v) \ge \operatorname{5tr}(u) \ge \operatorname{4tr}(u)$. (See figure 1)

Now, since $u^5v^4 = e_1$, we must have that u^{-5} moves x to y along the axis of v. Hence y is also labeled

$$y = u^{-5} \mathbb{F}_{\omega} = u_m^{-1} \cdots u_2^{-1} u_1^{-1}$$

and since $u_1^{-1} \in G$ we deduce $u_1^{-1} = b_n$. We can repeat this argument 2n times, getting:

$$u_i^{-1} = \begin{cases} b_{n-\frac{i-1}{2}} & (i \text{ odd}) \\ a_{n-\frac{i}{2}} & (i \text{ even}) \end{cases}$$

Where $a_0 \coloneqq a_n$ (The last syllable of the previous instance of v)

Since u is not cyclically reduced, it is of the form $\gamma u' \gamma^{-1}$ where u' is cyclically reduced and syl(γ) is at least 2n. Thus $u_{m-i+1} = u_i^{-1}$ for $i \leq 2n$. Now, on the axis of v, walking 2n steps s starting at x we have:

All in normal forms. Then the uniqueness in normal forms implies $a_n = u_{m-2n+1}^{-1} = u_{2n} = a_n^{-1}$. A contradiction, since a_n^{-1} is a nontrivial element in \mathbb{F}_{ω} . This concludes that $u^5v^4 \neq e_1$ thus proving this case.