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1 Intro and Motivation

1.1 Outline

In this talk I will prove that the theory of F is non-equational. The talk is based on an article by Isabel
Müller and Rizos Sklinos, building on previous work of Sela. (https://arxiv.org/abs/1703.04169)

The talk will consists of:

1. De�nitions, motivation and combinatorial tools

2. Proof F is non-equational

3. (If time permits)
Proof G1 ∗G2 (excluding Z2 ∗ Z2) is non-equational, using Bass-Serre Theory.

Note: Most of what's written down was not in the talk itself, but I tried to prove as much of the
nontrivial and semi-trivial statements as I could. Some of these are my own proofs so there may be some
inaccuracies.

1.2 De�nitions

De�nition 1.1. Let T be a �rst order theory. A formula ϕ (x, y) is called an equation in x (x is a
variable, y is a parameter, both are tuples) if any collection of instances ϕ (x, b) is equivalent to a �nite
sub-collection in T . That is, for any (bi)i∈I we have a �nite I0 ⊆ I s.t.:⋂

i∈I
ϕ (x, bi) =

⋂
i∈I0

ϕ (x, bi)

Equivalently,

Claim 1.2. ϕ (x, y) is an equation in x i� the family of intersections of instances ϕ (x, b) has the DCC.

Proof. (Same proof as for �Module is Noetherian i� sub-modules are �nitely generated�)
(⇒) If we have an ascending chain I1 ⊆ I2 ⊆ · · · of indexing sets that induces a descending chain:⋂

i∈I1

ϕ (x, bi) ⊇
⋂
i∈I2

ϕ (x, bi) ⊇ · · ·

Then if we take I =
⋃
n∈N In we have

⋂
i∈I ϕ (x, bi) =

⋂
i∈I0 ϕ (x, bi) for a �nite subset I0 of I and so

there must be some In0
for which I0 ⊆ In0

. So for any n > n0, I0 ⊆ Im ⊆ In and:⋂
i∈In

ϕ (x, bi) ⊇
⋂
i∈I

ϕ (x, bi) =
⋂
i∈I0

ϕ (x, bi) ⊇
⋂
i∈In

ϕ (x, bi)

therefore
⋂
i∈In ϕ (x, bi) =

⋂
i∈I ϕ (x, bi) and the chain is stable from n0.

(⇐) If we have the DCC and there is an indexing set I for which we take
⋂
i∈I ϕ (x, bi), then take the

family

Ω =

{⋂
i∈J

ϕ (x, bi) |J ⊆ Iis �nite

}
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It is nonempty since |M | =
⋂
i∈∅ ϕ (x, bi) ∈ Ω and any descending chain has a lower bound in this set. (A

descending chain
(⋂

i∈Jn ϕ (x, bi)
)
is stable hence there is some n0 s.t. the chain equals

⋂
i∈Jn0

ϕ (x, bi) ∈ Ω

from n0 and this is its lower bound). Therefore (Zorn) it has a minimal element
⋂
i∈I0 ϕ (x, bi). Now, it

is always true that: ⋂
i∈I0

ϕ (x, bi) ⊇
⋂
i∈I

ϕ (x, bi)

Since I0 ⊆ I so if these are not equal there exists j ∈ I r I0 such that:⋂
i∈I0

ϕ (x, bi) %
⋂

i∈I0∪{j}

ϕ (x, bi) ⊇
⋂
i∈I

ϕ (x, bi)

So I0 ∪ {j} ∈ Ω contradicts the minimality of I0. Hence there is an equality.

Remark 1.3. Equationality is a generalization of Noetherianity of Modules and Rings. Collections of bi
are the restricting conditions (Such as generators of ideals in a ring) and they have an ACC on their
closure.

⋂
i ϕ (x, bi) are the underlying sets (algebraic/closed sets of the Zariski topology) and they admit

a DCC (Noetherian topological space). Moreover, a ring is Noetherian i� every ideal is �nitely generated,
corresponding to our �rst de�nition.

De�nition 1.4. A theory T is n-equational if every formula ϕ (x, y) where |x| = n (x is an n-tuple) is a
Boolean combination of equations.

De�nition 1.5. T is equational if it is n-equational for all n ∈ N.

Example 1.6. Some examples of equations:

1. x = y

2. For any de�nable equivalence relation ∼, x ∼ y is an equation.

3. x 6= y is not an equation (for an in�nite model)
→So for an equation ϕ; ¬ϕ is not necessarily an equation.

4. In algebraically closed �elds ϕ (x, y)�
∑
α fα (y)xα = 0 is an equation.

→Precisely because k [x] is a Noetherian ring (Hilbert's Basissatz)

1.3 Some properties of equations

Remark 1.7. ϕ (x, y) is not an equation i� there exists an in�nite sequence {cn}n∈N and the following is
a properly decreasing chain:

ϕ (x, c0) % ϕ (x, c0) ∩ ϕ (x, c1) % · · · %
⋂
k≤n

ϕ (x, ck) % · · ·

Proof. (⇐) Immediate from the DCC.
(⇒) If ϕ (x, y) is not an equation, then there is a set I such that

⋂
i∈I ϕ (x, bi) but for every �nite

subset J ⊆ I it holds that: ⋂
i∈I

ϕ (x, bi) %
⋂
i∈J

ϕ (x, bi)

We can then choose {bin}n∈N and indexing sets In = {ik}nk=0 such that:⋂
i∈I0

ϕ (x, bi) %
⋂
i∈I1

ϕ (x, bi) % · · · %
⋂
i∈In

ϕ (x, bi) % · · ·

ϕ (x, bi0) % ϕ (x, bi0) ∩ ϕ (x, bi1) % · · · %
⋂
k≤n

ϕ (x, bik) % · · ·

Since all In are indeed �nite. Set cn = bin and we are done.
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Fact 1.8. If for arbitrarily large n there exists a sequence {bi}i<n such that the following is a decreasing
sequence:

ϕ (x, b0) % ϕ (x, b0) ∩ ϕ (x, b1) % · · · %
⋂
i<n

ϕ (x, bi)

Then there exists an in�nite properly decreasing sequence:

ϕ (x, c0) % ϕ (x, c0) ∩ ϕ (x, c1) % · · · %
⋂

0≤k≤n

ϕ (x, ck) ⊇ · · ·

The proof of this fact uses a compactness argument (which we didn't discuss in the seminar) on
formulas of the type:

n∧
i=1

(∃x)

ϕ (x, yi) ∧

¬ i−1∧
j=0

ϕ (x, yj)


One can also follow the proof of the stronger argument in the proof of Proposition 2.11 here:
https://www.math.uwaterloo.ca/∼rmoosa/ohara.pdf

Remark 1.9. For ϕ (x; y), ϕop (x; y) := ϕ (y;x) is an equation (w.r.t. y).

Proof. Su�ces to show one direction from symmetry. Assume ϕ (x, y) is not an equation in y. Then from
remark 1.7 We can then choose {an}n∈N such that:

ϕ (a0, y) % ϕ (a0, y) ∩ ϕ (a1, y) % · · · %
⋂
k≤n

ϕ (ak, y) % · · ·

Then there exist for each j ∈ N;

bj ∈
⋂
i<j

ϕ (aj , y) r ϕ (aj , y) =

whence � ϕ (ai, bj) for i < j but 2 ϕ (ai, bi).
This condition precisely means that for each n:

ϕ (x, bn) % ϕ (x, bn) ∩ ϕ (x, bn−1) % · · · %
⋂

0≤k≤n

ϕ (x, bk)

And by compactness there exists a sequence {ck}k∈N:

ϕ (x, c0) % ϕ (x, c0) ∩ ϕ (x, c1) % · · · %
⋂

0≤k≤n

ϕ (x, ck) ⊇ · · ·

Contradicting ϕ being an equation in x.

Lemma 1.10. Finite conjunctions and disjunctions of equations are equations:

Proof. Su�ces to show for two equations. Assume ϕ1 (x, y) , ϕ2 (x, y) are equations. Then take the
formulas: for some indexing sets I there exist I1, I2 such that:⋂

i∈I
ϕ1 (x, bi) =

⋂
i∈I1

ϕ1 (x, bi)⋂
i∈I

ϕ2 (x, bi) =
⋂
i∈I2

ϕ2 (x, bi)

And we have:
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⋂
i∈I

(ϕ1 (x, bi) ∨ ϕ2 (x, bi)) =

(⋂
i∈I

ϕ1 (x, bi)

)
∪

(⋂
i∈I

ϕ2 (x, bi)

)
=

=

(⋂
i∈I1

ϕ1 (x, bi)

)
∪

(⋂
i∈I2

ϕ2 (x, bi)

)
=

=

( ⋂
i∈I1∪I2

ϕ1 (x, bi)

)
∪

( ⋂
i∈I1∪I2

ϕ2 (x, bi)

)
=

=
⋂

i∈I1∪I2

(ϕ1 (x, bi) ∨ ϕ2 (x, bi))

Noting that adding I2 to I1 does not restrict
⋂
i∈I1 ϕ1 (x, bi) further since it already includes all the

conditions of ϕ1 (x, bi) for i ∈ I and vice versa on ϕ2 (x, bi). And similarly:

⋂
i∈I

(ϕ1 (x, bi) ∧ ϕ2 (x, bi)) =

(⋂
i∈I

ϕ1 (x, bi)

)
∩

(⋂
i∈I

ϕ2 (x, bi)

)
=

=

(⋂
i∈I1

ϕ1 (x, bi)

)
∩

(⋂
i∈I2

ϕ2 (x, bi)

)
=

=

( ⋂
i∈I1∪I2

ϕ1 (x, bi)

)
∩

( ⋂
i∈I1∪I2

ϕ2 (x, bi)

)
=

=
⋂

i∈I1∪I2

(ϕ1 (x, bi) ∧ ϕ2 (x, bi))

Where since I1, I2 are �nite, their union is �nite.

Corollary 1.11. Finite conjunctions and disjunctions of co-equations are co-equations:

Proof. Again, su�ces to show for two co-equations. Note that for ϕ,ψ equations,

¬ϕ (x, y) ∧ ¬ψ (x, y) = ¬ (ϕ (x, y) ∨ ψ (x, y))

¬ϕ (x, y) ∨ ¬ψ (x, y) = ¬ (ϕ (x, y) ∧ ψ (x, y))

The rest follows from the lemma.

1.4 Motivation

Question: Does 1-equational imply equational? No contradictions yet. Open problem. We will show F is
not 1-equational.

Motivation: Collect as many examples of non-equational theories. F is an example of a stable but
non-equational theory which is a surprising result.

2 Tools

We try to approach the concept of equationality in a combinatorial manner, starting with a combinatorial
criterion for some formula being an equation:

Lemma 2.1. ϕ (x, y) is not an equation i� and only if for arbitrarily large n ∈ N there are n-tuples
(ai) , (bi) such that � ϕ (ai, bj) for i < j but 2 ϕ (ai, bi).

Proof. We will show this criterion for ϕ (x, y) not being an equation in y. It not being an equation in x
follows from remark 1.9.

(⇐) If such tuples exist then

bj ∈
⋂
i<j

ϕ (ai, y) r
⋂
i≤j

ϕ (ai, y)
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And then:
ϕ (a0, y) % (ϕ (a0, y) ∩ ϕ (a1, y)) % · · · %

⋂
k≤n

ϕ (ak, y)

And we have an arbitrarily long descending chain, hence there must be an in�nite unstable descending
chain. So ϕ (x, y) is not an equation in y and therefore not an equation in x.

(⇒) Conversely, if ϕ (x, y) is not an equation in y then there exists an in�nite series {ai} and an
in�nite properly descending chain:

ϕ (a0, y) % (ϕ (a0, y) ∩ ϕ (a1, y)) % · · · %
⋂
k≤n

ϕ (ak, y)

So we can �nd bj ∈
⋂
i<j ϕ (ai, y) r

⋂
i≤j ϕ (ai, y) for all j ∈ N. In particular if we �x n we can take

the tuples (ai)i≤n and (bi)i≤n and our criterion is satis�ed.

Fact 2.2. Any Boolean combination ϕ of atomic formulas (ϕk) is equivalent to a formula in disjunctive
normal form (DNF)

ψ �
∨
n≤m

 ∧
j≤`n

ψi,j


Where ψi,j is some ϕki,j or ¬ϕki,j

Corollary 2.3. Assume ϕ (x, y) equivalent to Boolean combination of equations. Then ϕ (x, y) is equiv-
alent to a formula of the form:

ψ (x, y)�
∨
n≤m

(ψn1 (x, y) ∧ ¬ψn2 (x, y))

For some equations ψi1, ψ
i
2 and m ∈ N.

Proof. Write ψ (x, y) in DNF. Inside each element of the disjunction, there is a �nite conjunction of
equations and co-equations. Each such element is equivalent to a conjunction of an equation and a
co-equation therefore ϕ (x, y) is equivalent to ψ (x, y).

Lemma 2.4. If ϕ (x, y) is a formula then if for arbitrarily large n ∈ N exist n× n matrices

An := (aij)

Bn := (bij)

such that � ϕ (aij , bkl) i� i 6= k or (i, j) = (k, l) then ϕ (x, y) is not equivalent to a formula of the
form ψ1 (x, y) ∧ ¬ψ2 (x, y) where ψ1 and ψ2 are equations.

Proof. Part 1: First we prove that for arbitrarily large n every row (in both matrices simultaneously)
witnesses that ¬ϕ (x, y) is not equivalent to an equation.

Fix i0. Then we have (ai0j) and (bi0j) as n-tuples with:

(� ϕ (ai0j , bi0l)) ⇐⇒ j = l

(� ¬ϕ (ai0j , bi0l)) ⇐⇒ j 6= l

Speci�cally if j < l, � ¬ϕ (ai0j , bi0l). Therefore ϕ is not equivalent to an equation by Lemma 2.1
Part 2: Assume the contrary of the conclusion, i.e. that ϕ (x, y) ≡ ψ1 (x, y) ∧ ¬ψ2 (x, y) and reach a

contradiction.
Assuming this, we have that ¬ϕ (x, y) ≡ ¬ψ1 (x, y) ∨ ψ2 (x, y).
If for some i0 we have � ψ1 (ai0j,bi0,l) for all j, l then for i0 we have

¬ϕ (ai0j , bi0,l)↔ ψ2 (ai0j , bi0l)

For all j, l. Contradicting that ψ2 is an equation but by Part 1 of the proof the LHS satis�es the criterion
for not being an equation.
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Part 3: Now from part 2, for any i there exist some ji, li with � ¬ψ1 (aiji , bili). Set new n-tuples

(aiji) , (bklk)

For i 6= k we have � ϕ (aiji , bklk) (from the condition of the lemma). Remembering our original assumption
ϕ (x, y) ≡ ψ1 (x, y)∧¬ψ2 (x, y), For i < k then we have � ϕ (aiji , bklk) and hence � ψ1 (aiji , bklk) and also
2 ψ1 (aiji , bilk). Contradicting that ψ1 is an equation again by the criterion of Lemma 2.1.

Proposition 2.5. Suppose ϕ (x, y) a formula, An,Bn arbitrarily large matrices s.t.

1. There is a type which is satis�ed by any tuple (aij , bkl) for i 6= k or (i, j) = (k, l)

2. The formula ϕ (x, y) is satis�ed by (aij , bkl) if and only if i 6= k or (i, j) = (k, l)

Then T is non-equational. (Speci�cally, it is not n-equational for |x| = n)

Proof. We will show that ϕ is not a Boolean combination of equations. Assume the contrary. Then by
Remark 2.3, ϕ is equivalent to

ϕ (x, y) =
∨

0≤m≤n

(ψm1 (x, y) ∧ ¬ψm2 (x, y))

We have � ϕ (a11, b11). So there is some m0 such that if we de�ne

θ (x, y) := (ψm0
1 (x, y) ∧ ¬ψm0

2 (x, y))

Then
� θ (a11, b11) = (ψm0

1 (a11, b11) ∧ ¬ψm0
2 (a11, b11))

Since tp (a11, b11) = tp (aij , bkl) for i 6= k or (i, j) = (k, l) then we can deduce � θ (aij , bkl) for such
i, j, k, l.

If i = k but j 6= l then � ¬ϕ (aij , bkl) . In particular � ¬θ (aij , bkl).
By Lemma 2.4 this means that θ is not a conjunction of an equation and a negation of an equation.

Contradiction.

3 Non-Equationality of F
3.1 Working in Fω

Fact 3.1. (Sela) Non-abelian free groups share the same theory

This fact allows us to work in Fω. The motivation for it is so that we have a countable basis to create
arbitrarily large matrices that satisfy the condition of Proposition 2.5 with the correct formula and type.

3.2 De�nitions and useful properties of F
De�nition 3.2. (Reminder) An element of F is called primitive if it is part of some basis of F.

Fact 3.3. Let a be a primitive element of F. Suppose a belongs to a subgroup H of F, then a is a primitive
element of H.

Proof. Recall the Kurosh subgroup theorem:

Fact 3.4. (Kurosh subgroup theorem) If G = A ∗B and H ≤ G, then:

H =

[
~

Ag :g∈G
(H ∩Ag)

]
∗
[
~

Bg :g∈G
(H ∩Bg)

]
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(Note: ~ is supposed to be a big asterisk ∗ representing the free product but I had some technical
di�culties with it)

If a is a primitive element and a ∈ S then let S be the rest of the basis to which it belongs. F = 〈a〉 ∗
F (S) and so:

H = (H ∩ 〈a〉) ∗
[
~

〈a〉g:g∈F
(H ∩ 〈a〉g)

]
∗
[
~

F(S)g:g∈F
(H ∩ F (S)

g
)

]
Where (H ∩ 〈a〉) = 〈a〉 ⊆ H and the rest of the free product is some free group with some basis T so
{a} ∪ T is a basis for H.

Fact 3.5. Let e1, . . . , en be a basis of the free group Fn of rank n. Then em1
1 ·e

m2
2 · · · emn

n is not a primitive
element if for all i, mi 6= ±1

Remark 3.6. We had a similar argument for only one basis element emi
i .

Remark 3.7. If ∃i such thatmi = ±1 then em1
1 ·e

m2
2 · · · emn

n is a primitive element. So in fact the condition
in Fact 3.5 is i�.

3.3 Non-equationality of Fω

We de�ne the formula ϕne (x, y) = ∀u, v
(
[u, v] 6= 1→ xy 6= u5v4

)
Lemma 3.8. Let Fω := 〈e1, e2, . . . 〉. Then for any pair (a, b) which is part of some basis of Fω we have
Fω � ϕne (a, b).

Proof. It su�ces to prove (e1, 1) satis�es ϕne since all primitive elements have the same type (there's an
automorphism taking any basis to any other basis). So if � ϕne (e1, 1) then � ϕ (e1 · e2, 1) (since e1 · e2 is
primitive) and so � ϕ (e1, e2) and so any two distinct basis elements satisfy ϕne.

Assume ∃u, v, [u, v] 6= 1 such that e1 = u5v4. Then 〈u, v〉 is a free group of rank 2 (generated by two
non-commuting elements) and so e1 is a primitive element of 〈u, v〉 from Fact 3.3.

From Fact 3.5, e1 is not a primitive element of Fω. Contradiction.

De�ne the two matrices for arbitrary n ∈ N:

An =


e52e1 e53e1 · · · e5n+1e1
e53e2 e54e2 · · · e5n+2e2
...

...
. . .

...
e5n+1en e5n+2en · · · e52nen

 Bn =


e−11 e−42 e−11 e−43 · · · e−11 e−4n+1

e−12 e−43 e−12 e−44 · · · e−12 e−4n+2
...

...
. . .

...
e−1n e−4n+1 e−1n e−4n+2 · · · e−1n e−42n



aij = e5i+jei

bkl = e−1k e−4k+l

Lemma 3.9. Let An = (aij), Bn = (bkl) as above. if i 6= k or (i, j) = (k, l) then aij and bkl form part
of a basis of of Fω

Proof. Consider �rst the case i 6= k. Extend {i, k} by a subset S ⊆ {i+ j, k + l} of maximal size such
that S ∪ {i, k} contains only pairwise distinct elements. Then the set {es|s ∈ S} ∪ {aij , bkl} is part of a
basis, as the subgroup it generates contains {ei, ek} ∪ {es|s ∈ S} which is a part of a basis of the same
size.

If (i, j) = (k, l) then the set {aij , bij} =
{
e5i+jei, e

−1
i e−4i+j

}
forms a basis of F2 as the subgroup it

generates contains {ei, ei+j} which is part of a basis of the same size.

Lemma 3.10. Let An = (aij), Bn = (bkl) as above. Then Fω � ¬ϕne by any pair (aij , bkl) if i = k and
j 6= l.

Proof. If i = k take aij and bil for j 6= l. Then:

aijbkl = e5i+jeie
−1
i e−4i+l = e5i+je

−4
i+l

ei+j , e
−1
i+l do not commute if j 6= l so Fω � ¬ϕne (aij , bil).
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Theorem 3.11. The theory of the free group is non-equational.

Proof. By lemma 3.9 All pairs of the form (aij , bkl) for i 6= k and for (i, j) = (k, l) are images of each
other under automorphisms therefore they satisfy the same type. Namely tp (e1, e2).

For the second condition, need to show that Fω � ϕne (aij , bkl) i� i 6= k or (i, j) = (k, l).
From lemma 3.9 if i 6= k or (i, j) = (k, l) then aij , bkl are a part of a basis and so from lemma 3.8

Fω � ϕne (aij , bkl). In the other direction, if Fω � ϕne (aij , bkl) then from lemma 3.10 we have i 6= k or
(i, j) = (k, l).

So the conditions of Proposition 2.5 hold and the theory of Fω is non-equational.

4 Non-equationality of free product of groups

4.1 Motivation

Fact 4.1. (Sela) Let G1 ∗ G2 be a nontrivial free product which is not Z2 ∗ Z2. Then it is elementarily
equivalent to G1 ∗G2 ∗ F for any free group F.

Fact 4.2. (Sela) A free product of stable groups is stable.

From these facts it su�ces to show that the theory of a free product G ∗ Fω is not equational to get
a zoo of other examples of non-equational stable theories.

Theorem 4.3. Let G1 ∗G2 be a nontrivial free product which is not Z2 ∗ Z2. Then its �rst order theory
is non-equational.

To prove this we will prove the following lemma:

Lemma 4.4. Let Fω = 〈e1, e2, . . . , en, . . . 〉. Then for any pair (a, b) which is part of some basis of Fω
we have that G ∗ Fω � ϕne (a, b).

If we prove this lemma then, remembering that basis elements of Fω inside G ∗Fω still have the same
type, and that lemma 3.10 still holds, it would mean by Proposition 2.5 that theorem 4.3 is true.

4.2 Bass-Serre Theory

De�nition 4.5. If G = G1 ∗G2 We call an expression of the form g := g1g2 · · · gn ∈ G a normal form if
gi ∈ (G1 ∪G2) r {1} and no two consecutive components are in the same Gi.

Fact 4.6. This form is unique.

De�nition 4.7. For g ∈ G with normal form g1g2 · · · gn, the syllable length of g is de�ned syl (g) := n.

Fact 4.8. The identity element is the unique element with syllable length 0

De�nition 4.9. An element g with normal form g1g2 · · · gn is called cyclically reduced if g1, gn lie in
di�erent groups Gi.

Fact 4.10. Any element g ∈ G can be written as γg′γ−1 where g′ is cyclically reduced.

Recall Bass-Serre Theory.
Elements of G = G1 ∗ G2 act on a tree where vertices are cosets gGi for i = 1, 2 and an edge exists

between gG1 and gG2.
Any edge is trivially stabilized.
Stab (gGi) = Ggi .
Elements are either elliptic or hyperbolic.
Nontrivial elliptic elements h stabilize a unique vertex Fix (h) = gGi.
Hyperbolic elements h have an in�nite line Ax (h) (the axis of h) on which h acts by translation by

some �xed length tr (h) > 0.

Remark 4.11. Let u, v be hyperbolic elements in G such that their axes intersect in length at least
tr (u) + tr (v) + 1. Then u, v commute.
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Fact 4.12. If g, g′ ∈ G1 ∗G2 are both elliptic and Fix (g′) 6= Fix (g) then gg′ is hyperbolic with tr (gg′) =
2d (Fix (g) ,Fix (g′))

Remark 4.13. We can think of an elliptic element g ∈ G1 ∗ G2 as having tr (g) = 0 and its axis Ax (g)
consists of the point Fix (g).

Fact 4.14. Let u ∈ G1 ∗G2 be a cyclically reduced hyperbolic element. Then its axis Ax (u) contains G1

and G2.

Remark 4.15. If u ∈ G1 ∗ G2 is a hyperbolic element which is not cyclically reduced, then u = γu′γ−1

and its axis is a translation of Ax (u′) by γ.

4.3 Proof of Lemma 4.4

As in the proof of lemma 3.8 we need to show that for non-commuting u, v ∈ G ∗ Fω then u5v4 6= e1.

4.3.1 Reduction to a special case

First we take note that it su�ces to assume in the lemma that one of u, v is cyclically reduced:

Lemma 4.16. Assume the criterion for lemma 4.4 holds for any elements u, v which do not commute
and where at least one of u, v is cyclically reduced, then it holds for all u, v.

Proof. If u5v4 = e1 then in the normal form either u starts with the letter e1 or v ends with e1. Assume
u starts with e1 (proof symmetric otherwise) and neither u, v are cyclically reduced. Then u, v are
conjugates of cyclically reduced non-trivial words and more precisely u = e1u

′e−11 and v = v1v
′v−11 with

vi some element in G or a letter in Fω (u′, v′ not necessarily cyclically reduced) whence

u5v4 = e1u
′5e−11 v1v

′4v−11

If v1 6= e1 then there is no cancellation in the product so u5v4 cannot equal e1. Hence e1 = v1 and so:

u5v4 = e1u
′5v′4v−11 = e1 ⇐⇒ u′5v′4 = e1

And u′5v′4 still commute. We can decrease u′, v′ further in this manner, and by a length argument
we will reach some commuting v0, u0 where v50u

4
0 = e1 and at least one of them cyclically reduced,

contradicting the assumptions.

4.3.2 Proof of Lemma 4.4

Proof. As we mentioned, It su�ces to show that e1 cannot be written as u5v4 for some elements u, v that
do not commute, and where one of u, v is cyclically reduced. Assume such u, v existed. Consider their
action on the Bass-Serre tree corresponding to the splitting G ∗ Fω

We prove for the case that v is cyclically reduced and starts with a syllable from G. The case where
u is cyclically reduced and starts with a syllable in Fω is the same. The other cases are symmetrical.

Case 1. Assume both u and v are elliptic. Then if Fix (u) 6= Fix (v) then u5v4 is hyperbolic by fact
4.12 and so cannot be e1 which �xes Fω.
If Fix (u) = Fix (v) then this vertex is Fix (e1) = Fω and hence u, v ∈ Fω, non-commuting so
they generate a free group of rank 2. From fact 3.5 this means that e1 cannot be primitive in
this group and so from fact 3.3 it is not primitive in Fω. Contradiction.

Case 2. Assume v is elliptic. Then u is hyperbolic. v must �x either Fω or G. In the former case
u5 = e1v

−4 �xes Fω, contradicting u being hyperbolic, and in the latter, by lemma 4.12
u5 = e1v

−4 has tr
(
u5
)

= 2 while we know tr
(
u5
)

= 5tr (u) ≥ 5. Contradiction.

Case 3. Assume v is hyperbolic. We can think of u being elliptic as a special case of u being hyperbolic
with tr (u) = 0. so the rest of the proof will assume both v, u are hyperbolic.
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Figure 1: Axes of v, u and the action on Fω by v4 = u−5e1 where v is hyperbolic and cyclically reduced

Let v = b1a1b2 · · · bnan in the normal form, where bi ∈ G and ai ∈ Fω. Let u1u2 · · ·um be the normal form
of u5. If u is also cyclically reduced then Ax (u) and Ax (v) coincide for strictly more than tr (u) + tr (v)
since the path from Fω to v4Fω = u−5Fω lies in both axes and it is of length at least 4 max {tr (u) , tr (v)} >
tr (u) + tr (v), whence by remark 4.11 they commute. Contradiction.

Assume that u is not cyclically reduced then. In particular u1, um ∈ G or u1, um ∈ Fω. The latter
cannot hold since then there is no cancellation in u5 · v4 and hence it cannot be e1.

Now in the Bass-Serre tree Fω is moved by v4 along its axis to y = v4Fω that is labeled:

y = v3b1a1b2 · · · bnanFω = v3b1a1b2 · · · bnFω

We assume the axes of u and v coincide for at most tr (u)+tr (v). Otherwise, as above, they commute
and we're done. This implies that each of the two parts of the axis of v outside the axis of u between x
and y is of length at least tr (v) = syl (v) = 2n: The action of u−5 on x is as follows: It takes x to some
point x0 on Ax (u) = Ax

(
u5
)
, translates it by 5tr (u) to some point y0 and then sends it to y by the same

length as d (x, x0). So the axes of u, v coincide for a total length of c = 5tr (u) ≤ tr (u) + tr (v) and:

d (x, x0) = d (y0, y) =
d (x, y)− d (x0, y0)

2
=

4tr (v)− c
2

≥ 3tr (v)− tr (u)

2
≥ tr (v) = 2n

Where tr (v) ≥ tr (u) since 4tr (v) ≥ 5tr (u) ≥ 4tr (u). (See �gure 1)
Now, since u5v4 = e1,we must have that u

−5 moves x to y along the axis of v. Hence y is also labeled

y = u−5Fω = u−1m · · ·u−12 u−11

and since u−11 ∈ G we deduce u−11 = bn. We can repeat this argument 2n times, getting:

u−1i =

{
bn− i−1

2
(i odd)

an− i
2

(i even)

Where a0 := an (The last syllable of the previous instance of v)
Since u is not cyclically reduced, it is of the form γu′γ−1 where u′ is cyclically reduced and syl (γ) is

at least 2n. Thus um−i+1 = u−1i for i ≤ 2n. Now, on the axis of v, walking 2n steps s starting at x we
have:

Fω, G, u−1m Fω, u−1m u−1m−1G, . . . u−1m u−1m−1 · · ·u
−1
m−2n+1G

Fω, G, u−1m Fω, b1a1G, . . . b1a1 · · · bnanG

All in normal forms. Then the uniqueness in normal forms implies an = u−1m−2n+1 = u2n = a−1n . A
contradiction, since a−1n is a nontrivial element in Fω. This concludes that u5v4 6= e1 thus proving this
case.

10


	Intro and Motivation
	Outline
	Definitions
	Some properties of equations
	Motivation

	Tools
	Non-Equationality of F
	Working in F
	Definitions and useful properties of F
	Non-equationality of F

	Non-equationality of free product of groups
	Motivation
	Bass-Serre Theory
	Proof of Lemma 4.4
	Reduction to a special case
	Proof of Lemma 4.4



