Non-Equationality of The Free Group

Andrey Zagrebin

December 6, 2018

1 Intro and Motivation

1.1 Outline

In this talk I will prove that the theory of \mathbb{F} is non-equational. The talk is based on an article by Isabel Müller and Rizos Sklinos, building on previous work of Sela. (https://arxiv.org/abs/1703.04169)

The talk will consists of:

1. Definitions, motivation and combinatorial tools
2. Proof \mathbb{F} is non-equational
3. (If time permits)

Proof $G_{1} * G_{2}$ (excluding $\mathbb{Z}_{2} * \mathbb{Z}_{2}$) is non-equational, using Bass-Serre Theory.
Note: Most of what's written down was not in the talk itself, but I tried to prove as much of the nontrivial and semi-trivial statements as I could. Some of these are my own proofs so there may be some inaccuracies.

1.2 Definitions

Definition 1.1. Let T be a first order theory. A formula $\varphi(x, y)$ is called an equation in x (x is a variable, y is a parameter, both are tuples) if any collection of instances $\varphi(x, b)$ is equivalent to a finite sub-collection in T. That is, for any $\left(b_{i}\right)_{i \in I}$ we have a finite $I_{0} \subseteq I$ s.t.:

$$
\bigcap_{i \in I} \varphi\left(x, b_{i}\right)=\bigcap_{i \in I_{0}} \varphi\left(x, b_{i}\right)
$$

Equivalently,
Claim 1.2. $\varphi(x, y)$ is an equation in x iff the family of intersections of instances $\varphi(x, b)$ has the DCC.
Proof. (Same proof as for "Module is Noetherian iff sub-modules are finitely generated")
(\Rightarrow) If we have an ascending chain $I_{1} \subseteq I_{2} \subseteq \cdots$ of indexing sets that induces a descending chain:

$$
\bigcap_{i \in I_{1}} \varphi\left(x, b_{i}\right) \supseteq \bigcap_{i \in I_{2}} \varphi\left(x, b_{i}\right) \supseteq \cdots
$$

Then if we take $I=\bigcup_{n \in \mathbb{N}} I_{n}$ we have $\bigcap_{i \in I} \varphi\left(x, b_{i}\right)=\bigcap_{i \in I_{0}} \varphi\left(x, b_{i}\right)$ for a finite subset I_{0} of I and so there must be some $I_{n_{0}}$ for which $I_{0} \subseteq I_{n_{0}}$. So for any $n>n_{0}, I_{0} \subseteq I_{m} \subseteq I_{n}$ and:

$$
\bigcap_{i \in I_{n}} \varphi\left(x, b_{i}\right) \supseteq \bigcap_{i \in I} \varphi\left(x, b_{i}\right)=\bigcap_{i \in I_{0}} \varphi\left(x, b_{i}\right) \supseteq \bigcap_{i \in I_{n}} \varphi\left(x, b_{i}\right)
$$

therefore $\bigcap_{i \in I_{n}} \varphi\left(x, b_{i}\right)=\bigcap_{i \in I} \varphi\left(x, b_{i}\right)$ and the chain is stable from n_{0}.
(\Leftarrow) If we have the DCC and there is an indexing set I for which we take $\bigcap_{i \in I} \varphi\left(x, b_{i}\right)$, then take the family

$$
\Omega=\left\{\bigcap_{i \in J} \varphi\left(x, b_{i}\right) \mid J \subseteq \text { is finite }\right\}
$$

It is nonempty since $|M|=\bigcap_{i \in \varnothing} \varphi\left(x, b_{i}\right) \in \Omega$ and any descending chain has a lower bound in this set. (A descending chain $\left(\bigcap_{i \in J_{n}} \varphi\left(x, b_{i}\right)\right)$ is stable hence there is some n_{0} s.t. the chain equals $\bigcap_{i \in J_{n_{0}}} \varphi\left(x, b_{i}\right) \in \Omega$ from n_{0} and this is its lower bound). Therefore (Zorn) it has a minimal element $\bigcap_{i \in I_{0}} \varphi\left(x, b_{i}\right)$. Now, it is always true that:

$$
\bigcap_{i \in I_{0}} \varphi\left(x, b_{i}\right) \supseteq \bigcap_{i \in I} \varphi\left(x, b_{i}\right)
$$

Since $I_{0} \subseteq I$ so if these are not equal there exists $j \in I \backslash I_{0}$ such that:

$$
\bigcap_{i \in I_{0}} \varphi\left(x, b_{i}\right) \supsetneqq \bigcap_{i \in I_{0} \cup\{j\}} \varphi\left(x, b_{i}\right) \supseteq \bigcap_{i \in I} \varphi\left(x, b_{i}\right)
$$

So $I_{0} \cup\{j\} \in \Omega$ contradicts the minimality of I_{0}. Hence there is an equality.
Remark 1.3. Equationality is a generalization of Noetherianity of Modules and Rings. Collections of b_{i} are the restricting conditions (Such as generators of ideals in a ring) and they have an ACC on their closure. $\bigcap_{i} \varphi\left(x, b_{i}\right)$ are the underlying sets (algebraic/closed sets of the Zariski topology) and they admit a DCC (Noetherian topological space). Moreover, a ring is Noetherian iff every ideal is finitely generated, corresponding to our first definition.

Definition 1.4. A theory T is n-equational if every formula $\varphi(x, y)$ where $|x|=n$ (x is an n-tuple) is a Boolean combination of equations.

Definition 1.5. T is equational if it is n-equational for all $n \in \mathbb{N}$.
Example 1.6. Some examples of equations:

1. $x=y$
2. For any definable equivalence relation $\sim, x \sim y$ is an equation.
3. $x \neq y$ is not an equation (for an infinite model)
\rightarrow So for an equation $\varphi ; \neg \varphi$ is not necessarily an equation.
4. In algebraically closed fields $\varphi(x, y) \leftrightharpoons \sum_{\alpha} f_{\alpha}(y) x^{\alpha}=0$ is an equation.
\rightarrow Precisely because $\mathbb{k}[x]$ is a Noetherian ring (Hilbert's Basissatz)

1.3 Some properties of equations

Remark 1.7. $\varphi(x, y)$ is not an equation iff there exists an infinite sequence $\left\{c_{n}\right\}_{n \in \mathbb{N}}$ and the following is a properly decreasing chain:

$$
\varphi\left(x, c_{0}\right) \supsetneqq \varphi\left(x, c_{0}\right) \cap \varphi\left(x, c_{1}\right) \supsetneqq \cdots \supsetneqq \bigcap_{k \leq n} \varphi\left(x, c_{k}\right) \supsetneqq \cdots
$$

Proof. (\Leftarrow) Immediate from the DCC.
(\Rightarrow) If $\varphi(x, y)$ is not an equation, then there is a set I such that $\bigcap_{i \in I} \varphi\left(x, b_{i}\right)$ but for every finite subset $J \subseteq I$ it holds that:

$$
\bigcap_{i \in I} \varphi\left(x, b_{i}\right) \supsetneqq \bigcap_{i \in J} \varphi\left(x, b_{i}\right)
$$

We can then choose $\left\{b_{i_{n}}\right\}_{n \in \mathbb{N}}$ and indexing sets $I_{n}=\left\{i_{k}\right\}_{k=0}^{n}$ such that:

$$
\begin{array}{r}
\bigcap_{i \in I_{0}} \varphi\left(x, b_{i}\right) \supsetneqq \bigcap_{i \in I_{1}} \varphi\left(x, b_{i}\right) \supsetneqq \cdots \supsetneqq \bigcap_{i \in I_{n}} \varphi\left(x, b_{i}\right) \supsetneqq \cdots \\
\varphi\left(x, b_{i_{0}}\right) \supsetneqq \varphi\left(x, b_{i_{0}}\right) \cap \varphi\left(x, b_{i_{1}}\right) \supsetneqq \cdots \supsetneqq \bigcap_{k \leq n} \varphi\left(x, b_{i_{k}}\right) \supsetneqq \cdots
\end{array}
$$

Since all I_{n} are indeed finite. Set $c_{n}=b_{i_{n}}$ and we are done.

Fact 1.8. If for arbitrarily large n there exists a sequence $\left\{b_{i}\right\}_{i<n}$ such that the following is a decreasing sequence:

$$
\varphi\left(x, b_{0}\right) \supsetneqq \varphi\left(x, b_{0}\right) \cap \varphi\left(x, b_{1}\right) \supsetneqq \cdots \supsetneqq \bigcap_{i<n} \varphi\left(x, b_{i}\right)
$$

Then there exists an infinite properly decreasing sequence:

$$
\varphi\left(x, c_{0}\right) \supsetneqq \varphi\left(x, c_{0}\right) \cap \varphi\left(x, c_{1}\right) \supsetneqq \cdots \supsetneqq \bigcap_{0 \leq k \leq n} \varphi\left(x, c_{k}\right) \supseteq \cdots
$$

The proof of this fact uses a compactness argument (which we didn't discuss in the seminar) on formulas of the type:

$$
\bigwedge_{i=1}^{n}(\exists x)\left(\varphi\left(x, y_{i}\right) \wedge\left(\neg \bigwedge_{j=0}^{i-1} \varphi\left(x, y_{j}\right)\right)\right)
$$

One can also follow the proof of the stronger argument in the proof of Proposition 2.11 here: https://www.math.uwaterloo.ca/~rmoosa/ohara.pdf
Remark 1.9. For $\varphi(x ; y), \varphi^{o p}(x ; y):=\varphi(y ; x)$ is an equation (w.r.t. y).
Proof. Suffices to show one direction from symmetry. Assume $\varphi(x, y)$ is not an equation in y. Then from remark 1.7 We can then choose $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ such that:

$$
\varphi\left(a_{0}, y\right) \supsetneqq \varphi\left(a_{0}, y\right) \cap \varphi\left(a_{1}, y\right) \supsetneqq \cdots \supsetneqq \bigcap_{k \leq n} \varphi\left(a_{k}, y\right) \supsetneqq \cdots
$$

Then there exist for each $j \in \mathbb{N}$;

$$
b_{j} \in \bigcap_{i<j} \varphi\left(a_{j}, y\right) \backslash \varphi\left(a_{j}, y\right)=
$$

whence $\vDash \varphi\left(a_{i}, b_{j}\right)$ for $i<j$ but $\not \models \varphi\left(a_{i}, b_{i}\right)$.
This condition precisely means that for each n :

$$
\varphi\left(x, b_{n}\right) \supsetneqq \varphi\left(x, b_{n}\right) \cap \varphi\left(x, b_{n-1}\right) \supsetneqq \cdots \supsetneqq \bigcap_{0 \leq k \leq n} \varphi\left(x, b_{k}\right)
$$

And by compactness there exists a sequence $\left\{c_{k}\right\}_{k \in \mathbb{N}}$:

$$
\varphi\left(x, c_{0}\right) \supsetneqq \varphi\left(x, c_{0}\right) \cap \varphi\left(x, c_{1}\right) \supsetneqq \cdots \supsetneqq \bigcap_{0 \leq k \leq n} \varphi\left(x, c_{k}\right) \supseteq \cdots
$$

Contradicting φ being an equation in x.
Lemma 1.10. Finite conjunctions and disjunctions of equations are equations:
Proof. Suffices to show for two equations. Assume $\varphi_{1}(x, y), \varphi_{2}(x, y)$ are equations. Then take the formulas: for some indexing sets I there exist I_{1}, I_{2} such that:

$$
\begin{aligned}
& \bigcap_{i \in I} \varphi_{1}\left(x, b_{i}\right)=\bigcap_{i \in I_{1}} \varphi_{1}\left(x, b_{i}\right) \\
& \bigcap_{i \in I} \varphi_{2}\left(x, b_{i}\right)=\bigcap_{i \in I_{2}} \varphi_{2}\left(x, b_{i}\right)
\end{aligned}
$$

And we have:

$$
\begin{aligned}
\bigcap_{i \in I}\left(\varphi_{1}\left(x, b_{i}\right) \vee \varphi_{2}\left(x, b_{i}\right)\right) & =\left(\bigcap_{i \in I} \varphi_{1}\left(x, b_{i}\right)\right) \cup\left(\bigcap_{i \in I} \varphi_{2}\left(x, b_{i}\right)\right)= \\
& =\left(\bigcap_{i \in I_{1}} \varphi_{1}\left(x, b_{i}\right)\right) \cup\left(\bigcap_{i \in I_{2}} \varphi_{2}\left(x, b_{i}\right)\right)= \\
& =\left(\bigcap_{i \in I_{1} \cup I_{2}} \varphi_{1}\left(x, b_{i}\right)\right) \cup\left(\bigcap_{i \in I_{1} \cup I_{2}} \varphi_{2}\left(x, b_{i}\right)\right)= \\
& =\bigcap_{i \in I_{1} \cup I_{2}}\left(\varphi_{1}\left(x, b_{i}\right) \vee \varphi_{2}\left(x, b_{i}\right)\right)
\end{aligned}
$$

Noting that adding I_{2} to I_{1} does not restrict $\bigcap_{i \in I_{1}} \varphi_{1}\left(x, b_{i}\right)$ further since it already includes all the conditions of $\varphi_{1}\left(x, b_{i}\right)$ for $i \in I$ and vice versa on $\varphi_{2}\left(x, b_{i}\right)$. And similarly:

$$
\begin{aligned}
\bigcap_{i \in I}\left(\varphi_{1}\left(x, b_{i}\right) \wedge \varphi_{2}\left(x, b_{i}\right)\right) & =\left(\bigcap_{i \in I} \varphi_{1}\left(x, b_{i}\right)\right) \cap\left(\bigcap_{i \in I} \varphi_{2}\left(x, b_{i}\right)\right)= \\
& =\left(\bigcap_{i \in I_{1}} \varphi_{1}\left(x, b_{i}\right)\right) \cap\left(\bigcap_{i \in I_{2}} \varphi_{2}\left(x, b_{i}\right)\right)= \\
& =\left(\bigcap_{i \in I_{1} \cup I_{2}} \varphi_{1}\left(x, b_{i}\right)\right) \cap\left(\bigcap_{i \in I_{1} \cup I_{2}} \varphi_{2}\left(x, b_{i}\right)\right)= \\
& =\bigcap_{i \in I_{1} \cup I_{2}}\left(\varphi_{1}\left(x, b_{i}\right) \wedge \varphi_{2}\left(x, b_{i}\right)\right)
\end{aligned}
$$

Where since I_{1}, I_{2} are finite, their union is finite.
Corollary 1.11. Finite conjunctions and disjunctions of co-equations are co-equations:
Proof. Again, suffices to show for two co-equations. Note that for φ, ψ equations,

$$
\begin{aligned}
& \neg \varphi(x, y) \wedge \neg \psi(x, y)=\neg(\varphi(x, y) \vee \psi(x, y)) \\
& \neg \varphi(x, y) \vee \neg \psi(x, y)=\neg(\varphi(x, y) \wedge \psi(x, y))
\end{aligned}
$$

The rest follows from the lemma.

1.4 Motivation

Question: Does 1-equational imply equational? No contradictions yet. Open problem. We will show \mathbb{F} is not 1 -equational.

Motivation: Collect as many examples of non-equational theories. \mathbb{F} is an example of a stable but non-equational theory which is a surprising result.

2 Tools

We try to approach the concept of equationality in a combinatorial manner, starting with a combinatorial criterion for some formula being an equation:

Lemma 2.1. $\varphi(x, y)$ is not an equation iff and only if for arbitrarily large $n \in \mathbb{N}$ there are n-tuples $\left(a_{i}\right),\left(b_{i}\right)$ such that $\vDash \varphi\left(a_{i}, b_{j}\right)$ for $i<j$ but $\not \models \varphi\left(a_{i}, b_{i}\right)$.
Proof. We will show this criterion for $\varphi(x, y)$ not being an equation in y. It not being an equation in x follows from remark 1.9
(\Leftarrow) If such tuples exist then

$$
b_{j} \in \bigcap_{i<j} \varphi\left(a_{i}, y\right) \backslash \bigcap_{i \leq j} \varphi\left(a_{i}, y\right)
$$

And then:

$$
\varphi\left(a_{0}, y\right) \supsetneqq\left(\varphi\left(a_{0}, y\right) \cap \varphi\left(a_{1}, y\right)\right) \supsetneqq \cdots \supsetneqq \bigcap_{k \leq n} \varphi\left(a_{k}, y\right)
$$

And we have an arbitrarily long descending chain, hence there must be an infinite unstable descending chain. So $\varphi(x, y)$ is not an equation in y and therefore not an equation in x.
(\Rightarrow) Conversely, if $\varphi(x, y)$ is not an equation in y then there exists an infinite series $\left\{a_{i}\right\}$ and an infinite properly descending chain:

$$
\varphi\left(a_{0}, y\right) \supsetneqq\left(\varphi\left(a_{0}, y\right) \cap \varphi\left(a_{1}, y\right)\right) \supsetneqq \cdots \supsetneqq \bigcap_{k \leq n} \varphi\left(a_{k}, y\right)
$$

So we can find $b_{j} \in \bigcap_{i<j} \varphi\left(a_{i}, y\right) \backslash \bigcap_{i \leq j} \varphi\left(a_{i}, y\right)$ for all $j \in \mathbb{N}$. In particular if we fix n we can take the tuples $\left(a_{i}\right)_{i \leq n}$ and $\left(b_{i}\right)_{i \leq n}$ and our criterion is satisfied.

Fact 2.2. Any Boolean combination φ of atomic formulas $\left(\varphi_{k}\right)$ is equivalent to a formula in disjunctive normal form (DNF)

$$
\psi \leftrightharpoons \bigvee_{n \leq m}\left(\bigwedge_{j \leq \ell_{n}} \psi_{i, j}\right)
$$

Where $\psi_{i, j}$ is some $\varphi_{k_{i, j}}$ or $\neg \varphi_{k_{i, j}}$
Corollary 2.3. Assume $\varphi(x, y)$ equivalent to Boolean combination of equations. Then $\varphi(x, y)$ is equivalent to a formula of the form:

$$
\psi(x, y) \leftrightharpoons \bigvee_{n \leq m}\left(\psi_{1}^{n}(x, y) \wedge \neg \psi_{2}^{n}(x, y)\right)
$$

For some equations $\psi_{1}^{i}, \psi_{2}^{i}$ and $m \in \mathbb{N}$.
Proof. Write $\psi(x, y)$ in DNF. Inside each element of the disjunction, there is a finite conjunction of equations and co-equations. Each such element is equivalent to a conjunction of an equation and a co-equation therefore $\varphi(x, y)$ is equivalent to $\psi(x, y)$.

Lemma 2.4. If $\varphi(x, y)$ is a formula then if for arbitrarily large $n \in \mathbb{N}$ exist $n \times n$ matrices

$$
\begin{aligned}
& A_{n}:=\left(a_{i j}\right) \\
& B_{n}:=\left(b_{i j}\right)
\end{aligned}
$$

such that $\vDash \varphi\left(a_{i j}, b_{k l}\right)$ iff $i \neq k$ or $(i, j)=(k, l)$ then $\varphi(x, y)$ is not equivalent to a formula of the form $\psi_{1}(x, y) \wedge \neg \psi_{2}(x, y)$ where ψ_{1} and ψ_{2} are equations.

Proof. Part 1: First we prove that for arbitrarily large n every row (in both matrices simultaneously) witnesses that $\neg \varphi(x, y)$ is not equivalent to an equation.

Fix i_{0}. Then we have $\left(a_{i_{0} j}\right)$ and $\left(b_{i_{0} j}\right)$ as n-tuples with:

$$
\begin{aligned}
\left(\vDash \varphi\left(a_{i_{0} j}, b_{i_{0} l}\right)\right) & \Longleftrightarrow j=l \\
\left(\vDash \neg \varphi\left(a_{i_{0} j}, b_{i_{0} l}\right)\right) & \Longleftrightarrow j \neq l
\end{aligned}
$$

Specifically if $j<l, \vDash \neg \varphi\left(a_{i_{0} j}, b_{i_{0} l}\right)$. Therefore φ is not equivalent to an equation by Lemma 2.1
Part 2: Assume the contrary of the conclusion, i.e. that $\varphi(x, y) \equiv \psi_{1}(x, y) \wedge \neg \psi_{2}(x, y)$ and reach a contradiction.

Assuming this, we have that $\neg \varphi(x, y) \equiv \neg \psi_{1}(x, y) \vee \psi_{2}(x, y)$.
If for some i_{0} we have $\vDash \psi_{1}\left(a_{i_{0} j}, b_{i_{0}, l}\right)$ for all j, l then for i_{0} we have

$$
\neg \varphi\left(a_{i_{0} j}, b_{i_{0}, l}\right) \leftrightarrow \psi_{2}\left(a_{i_{0} j}, b_{i_{0} l}\right)
$$

For all j, l. Contradicting that ψ_{2} is an equation but by Part 1 of the proof the LHS satisfies the criterion for not being an equation.

Part 3: Now from part 2, for any i there exist some j_{i}, l_{i} with $\vDash \neg \psi_{1}\left(a_{i j_{i}}, b_{i l_{i}}\right)$. Set new n-tuples

$$
\left(a_{i j_{i}}\right),\left(b_{k l_{k}}\right)
$$

For $i \neq k$ we have $\vDash \varphi\left(a_{i j_{i}}, b_{k l_{k}}\right)$ (from the condition of the lemma). Remembering our original assumption $\varphi(x, y) \equiv \psi_{1}(x, y) \wedge \neg \psi_{2}(x, y)$, For $i<k$ then we have $\vDash \varphi\left(a_{i j_{i}}, b_{k l_{k}}\right)$ and hence $\vDash \psi_{1}\left(a_{i j_{i}}, b_{k l_{k}}\right)$ and also $\not \models \psi_{1}\left(a_{i j_{i}}, b_{i l_{k}}\right)$. Contradicting that ψ_{1} is an equation again by the criterion of Lemma 2.1.

Proposition 2.5. Suppose $\varphi(x, y)$ a formula, A_{n}, B_{n} arbitrarily large matrices s.t.

1. There is a type which is satisfied by any tuple $\left(a_{i j}, b_{k l}\right)$ for $i \neq k$ or $(i, j)=(k, l)$
2. The formula $\varphi(x, y)$ is satisfied by $\left(a_{i j}, b_{k l}\right)$ if and only if $i \neq k$ or $(i, j)=(k, l)$

Then T is non-equational. (Specifically, it is not n-equational for $|x|=n$)
Proof. We will show that φ is not a Boolean combination of equations. Assume the contrary. Then by Remark 2.3. φ is equivalent to

$$
\varphi(x, y)=\bigvee_{0 \leq m \leq n}\left(\psi_{1}^{m}(x, y) \wedge \neg \psi_{2}^{m}(x, y)\right)
$$

We have $\vDash \varphi\left(a_{11}, b_{11}\right)$. So there is some m_{0} such that if we define

$$
\theta(x, y):=\left(\psi_{1}^{m_{0}}(x, y) \wedge \neg \psi_{2}^{m_{0}}(x, y)\right)
$$

Then

$$
\vDash \theta\left(a_{11}, b_{11}\right)=\left(\psi_{1}^{m_{0}}\left(a_{11}, b_{11}\right) \wedge \neg \psi_{2}^{m_{0}}\left(a_{11}, b_{11}\right)\right)
$$

Since $\operatorname{tp}\left(a_{11}, b_{11}\right)=\operatorname{tp}\left(a_{i j}, b_{k l}\right)$ for $i \neq k$ or $(i, j)=(k, l)$ then we can deduce $\vDash \theta\left(a_{i j}, b_{k l}\right)$ for such i, j, k, l.

If $i=k$ but $j \neq l$ then $\vDash \neg \varphi\left(a_{i j}, b_{k l}\right)$. In particular $\vDash \neg \theta\left(a_{i j}, b_{k l}\right)$.
By Lemma 2.4 this means that θ is not a conjunction of an equation and a negation of an equation. Contradiction.

3 Non-Equationality of \mathbb{F}

3.1 Working in \mathbb{F}_{ω}

Fact 3.1. (Sela) Non-abelian free groups share the same theory
This fact allows us to work in \mathbb{F}_{ω}. The motivation for it is so that we have a countable basis to create arbitrarily large matrices that satisfy the condition of Proposition 2.5 with the correct formula and type.

3.2 Definitions and useful properties of \mathbb{F}

Definition 3.2. (Reminder) An element of \mathbb{F} is called primitive if it is part of some basis of \mathbb{F}.
Fact 3.3. Let a be a primitive element of \mathbb{F}. Suppose a belongs to a subgroup H of \mathbb{F}, then a is a primitive element of H.

Proof. Recall the Kurosh subgroup theorem:
Fact 3.4. (Kurosh subgroup theorem) If $G=A * B$ and $H \leq G$, then:

$$
H=\left[\underset{A^{g}: g \in G}{\circledast}\left(H \cap A^{g}\right)\right] *\left[\underset{B^{g}: g \in G}{\circledast}\left(H \cap B^{g}\right)\right]
$$

(Note: \circledast is supposed to be a big asterisk $*$ representing the free product but I had some technical difficulties with it)

If a is a primitive element and $a \in S$ then let S be the rest of the basis to which it belongs. $\mathbb{F}=\langle a\rangle *$ $\mathbb{F}(S)$ and so:

$$
H=(H \cap\langle a\rangle) *\left[\underset{\langle a\rangle^{g}: g \in \mathbb{F}}{\circledast}\left(H \cap\langle a\rangle^{g}\right)\right] *\left[\underset{\mathbb{F}(S)^{g}: g \in \mathbb{F}}{\circledast}\left(H \cap \mathbb{F}(S)^{g}\right)\right]
$$

Where $(H \cap\langle a\rangle)=\langle a\rangle \subseteq H$ and the rest of the free product is some free group with some basis T so $\{a\} \cup T$ is a basis for H.

Fact 3.5. Let e_{1}, \ldots, e_{n} be a basis of the free group \mathbb{F}_{n} of rank n. Then $e_{1}^{m_{1}} \cdot e_{2}^{m_{2}} \cdots e_{n}^{m_{n}}$ is not a primitive element if for all $i, m_{i} \neq \pm 1$
Remark 3.6. We had a similar argument for only one basis element $e_{i}^{m_{i}}$.
Remark 3.7. If $\exists i$ such that $m_{i}= \pm 1$ then $e_{1}^{m_{1}} \cdot e_{2}^{m_{2}} \cdots e_{n}^{m_{n}}$ is a primitive element. So in fact the condition in Fact 3.5 is iff.

3.3 Non-equationality of \mathbb{F}_{ω}

We define the formula $\varphi_{n e}(x, y)=\forall u, v\left([u, v] \neq 1 \rightarrow x y \neq u^{5} v^{4}\right)$
Lemma 3.8. Let $\mathbb{F}_{\omega}:=\left\langle e_{1}, e_{2}, \ldots\right\rangle$. Then for any pair (a, b) which is part of some basis of \mathbb{F}_{ω} we have $\mathbb{F}_{\omega} \vDash \varphi_{\text {ne }}(a, b)$.
Proof. It suffices to prove $\left(e_{1}, 1\right)$ satisfies $\varphi_{n e}$ since all primitive elements have the same type (there's an automorphism taking any basis to any other basis). So if $\vDash \varphi_{n e}\left(e_{1}, 1\right)$ then $\vDash \varphi\left(e_{1} \cdot e_{2}, 1\right)$ (since $e_{1} \cdot e_{2}$ is primitive) and so $\vDash \varphi\left(e_{1}, e_{2}\right)$ and so any two distinct basis elements satisfy $\varphi_{n e}$.

Assume $\exists u, v,[u, v] \neq 1$ such that $e_{1}=u^{5} v^{4}$. Then $\langle u, v\rangle$ is a free group of rank 2 (generated by two non-commuting elements) and so e_{1} is a primitive element of $\langle u, v\rangle$ from Fact 3.3 .

From Fact 3.5 e_{1} is not a primitive element of \mathbb{F}_{ω}. Contradiction.
Define the two matrices for arbitrary $n \in \mathbb{N}$:

$$
\begin{gathered}
\mathbf{A}_{n}=\left(\begin{array}{cccc}
e_{2}^{5} e_{1} & e_{3}^{5} e_{1} & \cdots & e_{n+1}^{5} e_{1} \\
e_{3}^{5} e_{2} & e_{4}^{5} e_{2} & \cdots & e_{n+2}^{5} e_{2} \\
\vdots & \vdots & \ddots & \vdots \\
e_{n+1}^{5} e_{n} & e_{n+2}^{5} e_{n} & \cdots & e_{2 n}^{5} e_{n}
\end{array}\right) \quad \mathbf{B}_{n}=\left(\begin{array}{cccc}
e_{1}^{-1} e_{2}^{-4} & e_{1}^{-1} e_{3}^{-4} & \cdots & e_{1}^{-1} e_{n+1}^{-4} \\
e_{2}^{-1} e_{3}^{-4} & e_{2}^{-1} e_{4}^{-4} & \cdots & e_{2}^{-1} e_{n+2}^{-4} \\
\vdots & \vdots & \ddots & \vdots \\
e_{n}^{-1} e_{n+1}^{-4} & e_{n}^{-1} e_{n+2}^{-4} & \cdots & e_{n}^{-1} e_{2 n}^{-4}
\end{array}\right) \\
a_{i j}=e_{i+j}^{5} e_{i} \\
b_{k l}=e_{k}^{-1} e_{k+l}^{-4}
\end{gathered}
$$

Lemma 3.9. Let $A_{n}=\left(a_{i j}\right), B_{n}=\left(b_{k l}\right)$ as above. if $i \neq k$ or $(i, j)=(k, l)$ then $a_{i j}$ and $b_{k l}$ form part of a basis of of \mathbb{F}_{ω}

Proof. Consider first the case $i \neq k$. Extend $\{i, k\}$ by a subset $S \subseteq\{i+j, k+l\}$ of maximal size such that $S \cup\{i, k\}$ contains only pairwise distinct elements. Then the set $\left\{e_{s} \mid s \in S\right\} \cup\left\{a_{i j}, b_{k l}\right\}$ is part of a basis, as the subgroup it generates contains $\left\{e_{i}, e_{k}\right\} \cup\left\{e_{s} \mid s \in S\right\}$ which is a part of a basis of the same size.

If $(i, j)=(k, l)$ then the set $\left\{a_{i j}, b_{i j}\right\}=\left\{e_{i+j}^{5} e_{i}, e_{i}^{-1} e_{i+j}^{-4}\right\}$ forms a basis of \mathbb{F}_{2} as the subgroup it generates contains $\left\{e_{i}, e_{i+j}\right\}$ which is part of a basis of the same size.

Lemma 3.10. Let $A_{n}=\left(a_{i j}\right), B_{n}=\left(b_{k l}\right)$ as above. Then $\mathbb{F}_{\omega} \vDash \neg \varphi_{n e}$ by any pair $\left(a_{i j}, b_{k l}\right)$ if $i=k$ and $j \neq l$.
Proof. If $i=k$ take $a_{i j}$ and $b_{i l}$ for $j \neq l$. Then:

$$
a_{i j} b_{k l}=e_{i+j}^{5} e_{i} e_{i}^{-1} e_{i+l}^{-4}=e_{i+j}^{5} e_{i+l}^{-4}
$$

e_{i+j}, e_{i+l}^{-1} do not commute if $j \neq l$ so $\mathbb{F}_{\omega} \vDash \neg \varphi_{n e}\left(a_{i j}, b_{i l}\right)$.

Theorem 3.11. The theory of the free group is non-equational.
Proof. By lemma 3.9 All pairs of the form $\left(a_{i j}, b_{k l}\right)$ for $i \neq k$ and for $(i, j)=(k, l)$ are images of each other under automorphisms therefore they satisfy the same type. Namely $t p\left(e_{1}, e_{2}\right)$.

For the second condition, need to show that $\mathbb{F}_{\omega} \vDash \varphi_{n e}\left(a_{i j}, b_{k l}\right)$ iff $i \neq k$ or $(i, j)=(k, l)$.
From lemma 3.9 if $i \neq k$ or $(i, j)=(k, l)$ then $a_{i j}, b_{k l}$ are a part of a basis and so from lemma 3.8 $\mathbb{F}_{\omega} \vDash \varphi_{n e}\left(a_{i j}, b_{k l}\right)$. In the other direction, if $\mathbb{F}_{\omega} \vDash \varphi_{n e}\left(a_{i j}, b_{k l}\right)$ then from lemma 3.10 we have $i \neq k$ or $(i, j)=(k, l)$.

So the conditions of Proposition 2.5 hold and the theory of \mathbb{F}_{ω} is non-equational.

4 Non-equationality of free product of groups

4.1 Motivation

Fact 4.1. (Sela) Let $G_{1} * G_{2}$ be a nontrivial free product which is not $\mathbb{Z}_{2} * \mathbb{Z}_{2}$. Then it is elementarily equivalent to $G_{1} * G_{2} * \mathbb{F}$ for any free group \mathbb{F}.

Fact 4.2. (Sela) A free product of stable groups is stable.
From these facts it suffices to show that the theory of a free product $G * \mathbb{F}_{\omega}$ is not equational to get a zoo of other examples of non-equational stable theories.

Theorem 4.3. Let $G_{1} * G_{2}$ be a nontrivial free product which is not $\mathbb{Z}_{2} * \mathbb{Z}_{2}$. Then its first order theory is non-equational.

To prove this we will prove the following lemma:
Lemma 4.4. Let $\mathbb{F}_{\omega}=\left\langle e_{1}, e_{2}, \ldots, e_{n}, \ldots\right\rangle$. Then for any pair (a, b) which is part of some basis of \mathbb{F}_{ω} we have that $G * \mathbb{F}_{\omega} \vDash \varphi_{n e}(a, b)$.

If we prove this lemma then, remembering that basis elements of \mathbb{F}_{ω} inside $G * \mathbb{F}_{\omega}$ still have the same type, and that lemma 3.10 still holds, it would mean by Proposition 2.5 that theorem 4.3 is true.

4.2 Bass-Serre Theory

Definition 4.5. If $G=G_{1} * G_{2}$ We call an expression of the form $g:=g_{1} g_{2} \cdots g_{n} \in G$ a normal form if $g_{i} \in\left(G_{1} \cup G_{2}\right) \backslash\{1\}$ and no two consecutive components are in the same G_{i}.
Fact 4.6. This form is unique.
Definition 4.7. For $g \in G$ with normal form $g_{1} g_{2} \cdots g_{n}$, the syllable length of g is defined $\operatorname{syl}(g):=n$.
Fact 4.8. The identity element is the unique element with syllable length 0
Definition 4.9. An element g with normal form $g_{1} g_{2} \cdots g_{n}$ is called cyclically reduced if g_{1}, g_{n} lie in different groups G_{i}.

Fact 4.10. Any element $g \in G$ can be written as $\gamma g^{\prime} \gamma^{-1}$ where g^{\prime} is cyclically reduced.
Recall Bass-Serre Theory.
Elements of $G=G_{1} * G_{2}$ act on a tree where vertices are cosets $g G_{i}$ for $i=1,2$ and an edge exists between $g G_{1}$ and $g G_{2}$.

Any edge is trivially stabilized.
$\operatorname{Stab}\left(g G_{i}\right)=G_{i}^{g}$.
Elements are either elliptic or hyperbolic.
Nontrivial elliptic elements h stabilize a unique vertex $\operatorname{Fix}(h)=g G_{i}$.
Hyperbolic elements h have an infinite line $\operatorname{Ax}(h)$ (the axis of h) on which h acts by translation by some fixed length $\operatorname{tr}(h)>0$.
Remark 4.11. Let u, v be hyperbolic elements in G such that their axes intersect in length at least $\operatorname{tr}(u)+\operatorname{tr}(v)+1$. Then u, v commute.

Fact 4.12. If $g, g^{\prime} \in G_{1} * G_{2}$ are both elliptic and $\operatorname{Fix}\left(g^{\prime}\right) \neq \operatorname{Fix}(g)$ then $g g^{\prime}$ is hyperbolic with $\operatorname{tr}\left(g g^{\prime}\right)=$ $2 d\left(\operatorname{Fix}(g), \operatorname{Fix}\left(g^{\prime}\right)\right)$

Remark 4.13. We can think of an elliptic element $g \in G_{1} * G_{2}$ as having $\operatorname{tr}(g)=0$ and its axis $\operatorname{Ax}(g)$ consists of the point Fix (g).

Fact 4.14. Let $u \in G_{1} * G_{2}$ be a cyclically reduced hyperbolic element. Then its axis $\operatorname{Ax}(u)$ contains G_{1} and G_{2}.
Remark 4.15. If $u \in G_{1} * G_{2}$ is a hyperbolic element which is not cyclically reduced, then $u=\gamma u^{\prime} \gamma^{-1}$ and its axis is a translation of $\operatorname{Ax}\left(u^{\prime}\right)$ by γ.

4.3 Proof of Lemma 4.4

As in the proof of lemma 3.8 we need to show that for non-commuting $u, v \in G * \mathbb{F}_{\omega}$ then $u^{5} v^{4} \neq e_{1}$.

4.3.1 Reduction to a special case

First we take note that it suffices to assume in the lemma that one of u, v is cyclically reduced:
Lemma 4.16. Assume the criterion for lemma 4.4 holds for any elements u, v which do not commute and where at least one of u, v is cyclically reduced, then it holds for all u, v.

Proof. If $u^{5} v^{4}=e_{1}$ then in the normal form either u starts with the letter e_{1} or v ends with e_{1}. Assume u starts with e_{1} (proof symmetric otherwise) and neither u, v are cyclically reduced. Then u, v are conjugates of cyclically reduced non-trivial words and more precisely $u=e_{1} u^{\prime} e_{1}^{-1}$ and $v=v_{1} v^{\prime} v_{1}^{-1}$ with v_{i} some element in G or a letter in $\mathbb{F}_{\omega}\left(u^{\prime}, v^{\prime}\right.$ not necessarily cyclically reduced) whence

$$
u^{5} v^{4}=e_{1} u^{\prime 5} e_{1}^{-1} v_{1} v^{\prime 4} v_{1}^{-1}
$$

If $v_{1} \neq e_{1}$ then there is no cancellation in the product so $u^{5} v^{4}$ cannot equal e_{1}. Hence $e_{1}=v_{1}$ and so:

$$
u^{5} v^{4}=e_{1} u^{\prime 5} v^{\prime 4} v_{1}^{-1}=e_{1} \Longleftrightarrow u^{\prime 5} v^{4}=e_{1}
$$

And $u^{\prime 5} v^{4}$ still commute. We can decrease u^{\prime}, v^{\prime} further in this manner, and by a length argument we will reach some commuting v_{0}, u_{0} where $v_{0}^{5} u_{0}^{4}=e_{1}$ and at least one of them cyclically reduced, contradicting the assumptions.

4.3.2 Proof of Lemma 4.4

Proof. As we mentioned, It suffices to show that e_{1} cannot be written as $u^{5} v^{4}$ for some elements u, v that do not commute, and where one of u, v is cyclically reduced. Assume such u, v existed. Consider their action on the Bass-Serre tree corresponding to the splitting $G * \mathbb{F}_{\omega}$

We prove for the case that v is cyclically reduced and starts with a syllable from G. The case where u is cyclically reduced and starts with a syllable in \mathbb{F}_{ω} is the same. The other cases are symmetrical.

Case 1. Assume both u and v are elliptic. Then if $\operatorname{Fix}(u) \neq \operatorname{Fix}(v)$ then $u^{5} v^{4}$ is hyperbolic by fact 4.12 and so cannot be e_{1} which fixes \mathbb{F}_{ω}.

If $\operatorname{Fix}(u)=\operatorname{Fix}(v)$ then this vertex is $\operatorname{Fix}\left(e_{1}\right)=\mathbb{F}_{\omega}$ and hence $u, v \in \mathbb{F}_{\omega}$, non-commuting so they generate a free group of rank 2. From fact 3.5 this means that e_{1} cannot be primitive in this group and so from fact 3.3 it is not primitive in \mathbb{F}_{ω}. Contradiction.

Case 2. Assume v is elliptic. Then u is hyperbolic. v must fix either \mathbb{F}_{ω} or G. In the former case $u^{5}=e_{1} v^{-4}$ fixes \mathbb{F}_{ω}, contradicting u being hyperbolic, and in the latter, by lemma 4.12 $u^{5}=e_{1} v^{-4}$ has $\operatorname{tr}\left(u^{5}\right)=2$ while we know $\operatorname{tr}\left(u^{5}\right)=5 \operatorname{tr}(u) \geq 5$. Contradiction.
Case 3. Assume v is hyperbolic. We can think of u being elliptic as a special case of u being hyperbolic with $\operatorname{tr}(u)=0$. so the rest of the proof will assume both v, u are hyperbolic.

Figure 1: Axes of v, u and the action on \mathbb{F}_{ω} by $v^{4}=u^{-5} e_{1}$ where v is hyperbolic and cyclically reduced

Let $v=b_{1} a_{1} b_{2} \cdots b_{n} a_{n}$ in the normal form, where $b_{i} \in G$ and $a_{i} \in \mathbb{F}_{\omega}$. Let $u_{1} u_{2} \cdots u_{m}$ be the normal form of u^{5}. If u is also cyclically reduced then $\operatorname{Ax}(u)$ and $\operatorname{Ax}(v)$ coincide for strictly more than $\operatorname{tr}(u)+\operatorname{tr}(v)$ since the path from \mathbb{F}_{ω} to $v^{4} \mathbb{F}_{\omega}=u^{-5} \mathbb{F}_{\omega}$ lies in both axes and it is of length at least $4 \max \{\operatorname{tr}(u), \operatorname{tr}(v)\}>$ $\operatorname{tr}(u)+\operatorname{tr}(v)$, whence by remark 4.11 they commute. Contradiction.

Assume that u is not cyclically reduced then. In particular $u_{1}, u_{m} \in G$ or $u_{1}, u_{m} \in \mathbb{F}_{\omega}$. The latter cannot hold since then there is no cancellation in $u^{5} \cdot v^{4}$ and hence it cannot be e_{1}.

Now in the Bass-Serre tree \mathbb{F}_{ω} is moved by v^{4} along its axis to $y=v^{4} \mathbb{F}_{\omega}$ that is labeled:

$$
y=v^{3} b_{1} a_{1} b_{2} \cdots b_{n} a_{n} \mathbb{F}_{\omega}=v^{3} b_{1} a_{1} b_{2} \cdots b_{n} \mathbb{F}_{\omega}
$$

We assume the axes of u and v coincide for at most $\operatorname{tr}(u)+\operatorname{tr}(v)$. Otherwise, as above, they commute and we're done. This implies that each of the two parts of the axis of v outside the axis of u between x and y is of length at least $\operatorname{tr}(v)=\operatorname{syl}(v)=2 n$: The action of u^{-5} on x is as follows: It takes x to some point x_{0} on $\operatorname{Ax}(u)=\operatorname{Ax}\left(u^{5}\right)$, translates it by $5 \operatorname{tr}(u)$ to some point y_{0} and then sends it to y by the same length as $d\left(x, x_{0}\right)$. So the axes of u, v coincide for a total length of $c=5 \operatorname{tr}(u) \leq \operatorname{tr}(u)+\operatorname{tr}(v)$ and:

$$
d\left(x, x_{0}\right)=d\left(y_{0}, y\right)=\frac{d(x, y)-d\left(x_{0}, y_{0}\right)}{2}=\frac{4 \operatorname{tr}(v)-c}{2} \geq \frac{3 \operatorname{tr}(v)-\operatorname{tr}(u)}{2} \geq \operatorname{tr}(v)=2 n
$$

Where $\operatorname{tr}(v) \geq \operatorname{tr}(u)$ since $4 \operatorname{tr}(v) \geq 5 \operatorname{tr}(u) \geq 4 \operatorname{tr}(u)$. (See figure 1)
Now, since $u^{5} v^{4}=e_{1}$, we must have that u^{-5} moves x to y along the axis of v. Hence y is also labeled

$$
y=u^{-5} \mathbb{F}_{\omega}=u_{m}^{-1} \cdots u_{2}^{-1} u_{1}^{-1}
$$

and since $u_{1}^{-1} \in G$ we deduce $u_{1}^{-1}=b_{n}$. We can repeat this argument $2 n$ times, getting:

$$
u_{i}^{-1}= \begin{cases}b_{n-\frac{i-1}{2}} & (i \text { odd }) \\ a_{n-\frac{i}{2}} & (i \text { even })\end{cases}
$$

Where $a_{0}:=a_{n}$ (The last syllable of the previous instance of v)
Since u is not cyclically reduced, it is of the form $\gamma u^{\prime} \gamma^{-1}$ where u^{\prime} is cyclically reduced and $\operatorname{syl}(\gamma)$ is at least $2 n$. Thus $u_{m-i+1}=u_{i}^{-1}$ for $i \leq 2 n$. Now, on the axis of v, walking $2 n$ steps s starting at x we have:

$$
\begin{array}{cccccc}
\mathbb{F}_{\omega}, & G, & u_{m}^{-1} \mathbb{F}_{\omega}, & u_{m}^{-1} u_{m-1}^{-1} G, & \ldots & u_{m}^{-1} u_{m-1}^{-1} \cdots u_{m-2 n+1}^{-1} G \\
\mathbb{F}_{\omega}, & G, & u_{m}^{-1} \mathbb{F}_{\omega}, & b_{1} a_{1} G, & \ldots & b_{1} a_{1} \cdots b_{n} a_{n} G
\end{array}
$$

All in normal forms. Then the uniqueness in normal forms implies $a_{n}=u_{m-2 n+1}^{-1}=u_{2 n}=a_{n}^{-1}$. A contradiction, since a_{n}^{-1} is a nontrivial element in \mathbb{F}_{ω}. This concludes that $u^{5} v^{4} \neq e_{1}$ thus proving this case.

