
LECTURE 7: THE WEIRDO AMONG STABLE GROUPS

ISABEL

Before Sela added the free group to the class of stable groups, abelian groups
and algebraic groups were the two leading examples of the class and it
was the intuition that much of general truth about stable groups could be
deduced from studying these two classes alone. Selas result heavily changed
that picture of stable groups, not only because the free group was not quite
an expected candidate for being stable, but also because there are several
notions which hold for abelian and algebraic stable groups, and were thus
expected to hold for stable groups as such, and which were contradicted by
the free group. We will see and discuss three of these notions in the talk.

1. The Tricotomy Conjecture

We noted that morally, abelian and algebraic groups were the only pure
stable groups considered. While in the stable setting, this was morally true,
in some stronger class it is still not known if there are other examples.

Conjecture 1.1 (Algebraicity Conjecture). Every infinite simple group of
finite Morley rank is an algebraic group over an algebraically closed field.

Recently, it has been shown that the conjecture is true for groups of Morley
rank up to 3. If you manage to solve it, fame will be yours.
The Algebraicity Conjecture is intimately related to another famous conjec-
ture, Zil’bers Trichotomy Conjecture. We will repeat some notions from the
exercise class.

Definition 1.2. We say that a set X together with some function cl :
P(X)→ P(X) is a pregeometry, if the following conditions hold:

• A ⊆ cl(A), A ⊆ B ⇒ cl(A) ⊆ cl(B), cl(cl(A)) = cl(A)
• b ∈ cl(A) if and only if there exists some finite A0 ⊆ A such that
b ∈ cl(A0) and
• Exchange: If a, c are elements such that a ∈ cl(Bc)\cl(B) for some

set B, then also c ∈ cl(Ba).

If (X, cl) is a pregeometry, we define for any finite subset A ⊆ X a dimen-
sion

d(A) := min{|A0| | A0 ⊆ A ⊆ cl(A0)}.

Fact 1.3. If a theory T is strongly minimal, i.e. in any of its models every
definable set is either finite or co-finite, then the algebraic closure operator
defines a pregeometry on each of the models of T .

Remark 1.4. Note that the dimension function d is submodular, i.e. for
all A and B finite dimensional and closed, we have

d(AB) ≤ d(A) + d(B)− d(A ∩B).
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If the inequality is an equality (whenever d(A ∩ B) > 0), then we call d
(locally) modular.
On the other hand, for any such formula we can define a closure operator
cl : P(X)→ P(X) via

cl(A) = {x ∈ X | ∃A0 ⊆
fin
A such that d(A0) = d(A0x)}.

Examples 1.5. • The pure set, cl(A) = A. What is the dimension?
• infinite dimensional vector spaces. What is the dimension?
• Algebraically closed fields. What is the dimension?

The famous Trichotomy Conjecture now suggested that these three examples
would essentially cover all strongly minimal pregeometries.

Conjecture 1.6 (Zilbers Trichotomy Conjecture). The acl-geometry of some
strongly minimal set M falls into one of the following three disjoint classes:

(i) It is set like, i.e. disintegrated, i.e. cl(A) =
⋃

a∈A cl(a).
(ii) It is vector space like, i.e. not disintegrated, but locally modular.

(iii) There is an algebraically closed field interpretable in the theory of
M .

Note the strong implication Zil’bers Conjecture would have in the realm of
interaction between model theory and algebra: If we start with an arbitrary
strongly minimal theory whose geometry is not locally modular, then an
actual field is interpretable in it and hence we can do algebraic geometry.
Nevertheless, the conjecture had been refuted by Hrushovski [?] soon after.
Nevertheless, work around the Trichotomy Conjecture continued and proved
to be a rich source of research. The continuation of Zil’bers Conjecture can
basically be partitioned into two streams:

(1) What further conditions should be put in order to make the conjec-
ture hold?

(2) How far is the conjecture from being true? Can we fill the gap
between vectorspace-like geometries and algebraically closed fields?

It turns out that there is a very natural setting in which Zil’bers Conjecture
holds: the Zariski geometries. The establishment of Zil’bers Conjecture in
this setting had far reaching consequences and allowed Hrushovski to give
model theoretic proofs of profound number theoretic conjectures.

Example 1.7 (DCF and Mordel-Lang). Roughly speaken, the Mordel-Lang
conjecture states that given an abelian variety, the intersection of a proper
subvariety with a subgroup is a finite union of subgroups. In order to tackle
this conjecture in a model theoretic approach, Hrushovski considered the un-
derlying fields in the language of rings enlarged by a symbol ∂ for a difference
function, which is additive and satisfies ∂(xy) = x∂(y) + y∂(x). This leads
to the theory of differential fields. Its model companion is the theory of dif-
ferentially closed fields DCF. Now Hrushovski proved that in a differentially
closed field any type of rank one is either one-based, which is the analog of
locally modular for arbitrary simple theories, or it is non-orthogonal to the
(algebraically closed) field of constants, i.e. the field of all elements such
that ∂(x) = 0. Thus he established a version of Zilbers Conjecture in the
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framework of differentially closed fields. This lead him to give a proof of the
famous Mordel-Lang Conjecture in arbitrary characteristic.

Example 1.8 (ACFA and Munin-Mumford). The Munin-Mumford conjec-
ture, again resting deep inside the area of number theory, can be seen as an
analog of the Mordel-Lang conjecture, where the subgroup is the group of
torsion elements of the abelian variety. To consider this conjecture from a
model theoretic point of view, one considers the underlying field in the lan-
guage of ring enriched by one symbol σ for an automorphism. This leads to
the theory of difference fields. Its model companion is ACFA, the theory of
algebraically closed fields with a generic automorphism. Here, Chatzidakis
and Hrushovski again established Zil’bers Conjecture, proving that any type
of rank 1 is either one-based or almost internal to some field, which is ei-
ther the field Fix(σ) or the field Fix(σn Frobn

p ), for positive characteristic,
where Frobp is the Frobenius automorphism, sending an element to its p-th
power. This lead them to give a completely model theoretic proof of the
Munin-Mumford Conjecture.

1.1. Ampleness.

Definition 1.9. Let T be a stable theory and n ∈ N arbitrary. We say that
a theory is n-ample if possibly after naming parameters there are tuples
a0, a1 . . . , an which satisfy the following properties:

(i) We have acleq(a0) ∩ acleq(a1) = acleq(∅);
(ii) For all 1 ≤ i < n it holds acleq(a0, . . . , ai−1ai)∩acleq(a0, . . . , ai−1, ai+1) =

acleq(a0, . . . , ai);
(iii) For all 1 ≤ i < n we have a0, . . . , ai−1 |̂ ai

ai+1 and

(iv) It holds that a0 6 |̂ an.

One can understand the degree of ampleness of being a measure on how
complicated the forking relation is within the given theory. We already
observed that in vector spaces the independence is completely described by
the algebraic closures. One can understand the ampleness of a theory in a
way of a measure, how far this statement is from being true.
The following remark is easy to see.

Remark 1.10. (1) The notions of ampleness form a hierarchy, i.e. any
structure which is n+ 1 ample, is also n ample.

(2) A stable theory T is 1-ample, if and only if it is not one-based.
(3) A stable theory T is 2-ample, if and only if it is not CM-trivial.

Current research suggests, we should not consider this notion for all stable
theories, but rather for all pregeometries. The algebraic closure as closure
operator is too week in strictly stable theories and the notion might gain
essence by moving to another notion of closure which actually satisfies ex-
change.

Fact 1.11. Vector spaces and pure Abelian Groups are one-based, i.e. not
1-ample. Algebraically closed fields are n-ample for all natural numbers n.

The notion of ampleness was introduced by Pillay. He also proved that the
free group is 2-ample and conjectured that this would be its maximal level
of ampleness. Alas...
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Fact 1.12 (Sklinos). The free group is n-ample for any natural number n.

This property was considered to be inert to algebraic groups and alge-
braically closed fields. Nevertheless,

Fact 1.13 (Byron, Sklinos). There is no infinite field definable in F.

This is the only known example of a pure group which is n-ample for all n
and does not interpret a field.

2. Equationality

Rumor has it, that Sela asked Hrushovski which kind of results about the
free group would interest model theorists. When the latter mentioned sta-
bility and Sela asked how one could prove something like this, Hrushovski
replied: “You could try to prove that it is equational.” Until then, there had
only been one non-equational, stable structure, which was constructed by
Hrushovski himself in a rather complicated combinatorial matter. It seemed
that in all reasonable cases, equationality and stability would fall together.
Nevertheless, some few days later, Sela came back to Hrushovski, saying:
“Well, it is not equational. How else can you show stability?”
As so many notions in Model Theory, the notion of equationality takes
its inspiration from core math and, once again, specifically from Algebraic
Geometry. It can be understood as a version of Noetherianity for the first
order setting.

Definition 2.1 (Noetherian). A topological space is called noetherian, if the
family of closed sets has the descending chain condition, i.e. any descending
sequence of closed sets stabilizes eventually.

Zarriski topologies are noetherian due to the fact that there is a dimension
on its set and proper subspaces drop in that dimension.
Now we want to give the model theoretic analogue of noetherianity. As
frequent in model theory, the notion of an equation is introduced for formulas
and transferred from there to arbitrary theories.

Definition 2.2. Work in a theory T and saturated models M of it. We say
that a formula ϕ(x, y) is an equation (in x), if the family of its instances has
the descending chain condition. This means that for any I and (ai)i∈I ∈M ,
there is some I0 ⊆ I such that

⋂
i∈I ϕ(M,ai) =

⋂
i∈I0 ϕ(M,ai).

We say that the theory T is n-equational, if any of the formulas ϕ(x, y)
where x is an n-tuple, is a Boolean combination of equations. We say that
T is equational, if it is n-equational for all n ∈ N .

Remark 2.3. Zarriski Tpology: Note that in algebraically varieties, the
definable sets are Boolean combinations of Zarriski closed sets, which are
instances of equations by Noetherianity. Hence, algebraically closed fields
are equational exactly because there are Noetherian.

Exercise 2.4. Equational implies stable.

What about the converse ? Stability yields a notion of independence. Can
we hope for an analogue of a “drop of dimension” as in Zarriski geome-
tries which ensures equationality? Let us confer with the expert on counter
examples...
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Example 2.5 (Hrushovski - Srour). There is an ω-stable structure of infinite
Morley rank which is not equational.

So again, what if groups enter the picture? Our two original prototypical
examples of stable groups, do not help much.

Fact 2.6. (i) ACFs are equational.
(ii) Abelian Groups are equational. Indeed, any one based theory is equa-

tional.

So one could conjecture that any stable group is also equational. Once again,
the free group troubles this picture.

Fact 2.7. The first order theory of the free group is not equational.

The proof is very involved and uses tower constructions and test sequences.
It has not yet been published. There is an easy criterion which yields a
stronger result (building on a very deep theorem of Sela):

Fact 2.8. Any theory of the free product of stable groups, not both isomor-
phic to Z2, is stable (Sela) and non-equational.

Remark 2.9. Note that there are many easily accessible open questions
about equationality:

• Are strongly minimal sets equational?
• Does 1-equationality imply equationality?
• How does the ample hierarchy relate to equationality?
• Under which conditions do equationality and nfcp fall together?

In case you want to start your own research.

3. The Finite Cover Property

Another sharpening of stability is given by a theory Not having the Finite
Cover Property (NFCP). In the stable case, this is equivalent to eliminating
the ∃∞ quantifier. The notion of NFCP is considered to go hand in hand
with the notion of equationality and the free group was thus expected to
indeed have the finite cover property. As we reach the end of this lecture,
we should not be surprised by the following theorem:

Fact 3.1. The free group does not have the finite cover property.

Anyway, NFCP gives that probably free group with generic automorphism
exists, and theory of belle pairs (starated models are again belle pairs).

Definition 3.2. We say that a formula ϕ(x, y) has the finite cover property
(fcp), if there does NOT exist any k ∈ N such that for any sequence (ai)i∈I
we have that {ϕ(x, ai | i ∈ I} is k-consistent if and only if it is consistent.
We say that a theory does not have the finite cover property, if non of its
formulas has the finite cover property.

Fact 3.3. Any theory which is NFCP, is also stable. On the other hand,
there are ω-stable theories, which do have FCP.

Another characterisation of having NFCP, when we already know that the
ambient theory is stable, is given by the following:
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Fact 3.4. A stable theory T has NFCP if and only if it eliminates the ∃∞
quantifier.

Recall that we call a theory T categorical in some cardinal κ, if it has (up
to isomorphism) exactly one model of cardinality κ.

Fact 3.5. If T is categorical in some cardinality κ, then it has nfcp.

Remember the beginning of the lecture where we mentioned in Morleys cate-
goricity theorem that algebraically closed fields are uncountably categorical.
This yields the following Corollary.

Corollary 3.6. Algebraically closed fields don’t have the finite cover prop-
erty.

Exercise 3.7. Are algebraically closed fields also ℵ0 categorical?

Also abelian groups have NFCP, though following another argument. The
free group provides the only known example of a stable structure, which
does not have the finite cover property, but nevertheless is not equational,
proving that NFCP does not imply equationality.
For those acquainted with the notions, we want to point out that there are
strong consequences of a theory having NFCP:

Remark 3.8. If T has NFCP, then the theory of its belle paires TP and the
theory of adding a generic automorphism TA exist.
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